Phases of the~Goldstone multitrace matrix model in the~large-$N$ limit
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 457-465
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the Goldstone Hermitian matrix model with a multitrace term. When
defining the solution on two intervals, we introduce a special parameter
$\xi$ describing the phase. We discuss the phase existence conditions at
$\xi=0$ (or $1$) and at $\xi=1/2$. We calculate the propagator and
the vacuum energy in the symmetric case $\xi=1/2$. In the general case, we
discuss the solution structure and calculate the magnetization and other
parameters expressed in terms of the sum of all the intervals.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
planar approximation, Hermitian matrix model, multicut solution.
Mots-clés : multitrace term
                    
                  
                
                
                Mots-clés : multitrace term
@article{TMF_2007_152_3_a3,
     author = {A. O. Shishanin},
     title = {Phases of {the~Goldstone} multitrace matrix model in the~large-$N$ limit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {457--465},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a3/}
}
                      
                      
                    A. O. Shishanin. Phases of the~Goldstone multitrace matrix model in the~large-$N$ limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 457-465. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a3/
