Phases of the Goldstone multitrace matrix model in the large-$N$ limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 457-465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Goldstone Hermitian matrix model with a multitrace term. When defining the solution on two intervals, we introduce a special parameter $\xi$ describing the phase. We discuss the phase existence conditions at $\xi=0$ (or $1$) and at $\xi=1/2$. We calculate the propagator and the vacuum energy in the symmetric case $\xi=1/2$. In the general case, we discuss the solution structure and calculate the magnetization and other parameters expressed in terms of the sum of all the intervals.
Keywords: planar approximation, Hermitian matrix model, multicut solution.
Mots-clés : multitrace term
@article{TMF_2007_152_3_a3,
     author = {A. O. Shishanin},
     title = {Phases of {the~Goldstone} multitrace matrix model in the~large-$N$ limit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {457--465},
     year = {2007},
     volume = {152},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a3/}
}
TY  - JOUR
AU  - A. O. Shishanin
TI  - Phases of the Goldstone multitrace matrix model in the large-$N$ limit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 457
EP  - 465
VL  - 152
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a3/
LA  - ru
ID  - TMF_2007_152_3_a3
ER  - 
%0 Journal Article
%A A. O. Shishanin
%T Phases of the Goldstone multitrace matrix model in the large-$N$ limit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 457-465
%V 152
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a3/
%G ru
%F TMF_2007_152_3_a3
A. O. Shishanin. Phases of the Goldstone multitrace matrix model in the large-$N$ limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 457-465. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a3/

[1] G. 't Hooft, Nucl. Phys. B, 72 (1974), 461 | DOI

[2] W. T. Tutte, Canad. J. Math., 14 (1962), 21 ; J. Koplik, A. Neveu, S. Nussinov, Nucl. Phys. B, 123 (1977), 109 | DOI | MR | Zbl | DOI | MR

[3] E. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber, Commun. Math. Phys., 59 (1978), 35 | DOI | MR | Zbl

[4] Y. Shimamune, Phys. Lett. B, 108 (1982), 407 | DOI

[5] I. Ya. Arefeva, A. S. Ilchev, V. K. Mitryushkin, “Fazovaya struktura matrichnoi modeli Goldstouna v predele bolshikh $N$”, Tr. III Mezhdunarodnogo simpoziuma po izbrannym problemam statisticheskoi mekhaniki (Dubna, 1984), 1, OIYaI, Dubna, 1984, 20

[6] G. M. Cicuta, L. Molinari, E. Montaldi, Mod. Phys. Lett. A, 1 (1986), 125 | DOI | MR

[7] G. M. Cicuta, L. Molinari, E. Montaldi, J. Phys. A, 20 (1987), L67 | DOI

[8] J. Jurkiewicz, Phys. Lett. B, 245 (1990), 178 ; O. Lechtenfeld, Int. J. Modern Phys. A, 7 (1992), 2335 ; 7097 ; G. Akemann, Nucl. Phys. B, 482 (1996), 403 ; ; G. Bonnet, F. David, B. Eynard, J. Phys. A, 33 (2000), 6739 ; hep-th/9606004cond-mat/0003324 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[9] R. Dijkgraaf, C. Vafa, Nucl. Phys. B, 644 (2002), 3 ; ; ; ; A perturbative window into non-perturbative physics, hep-th/0206255hep-th/0207106hep-th/0208048 | DOI | MR | Zbl | DOI | MR | Zbl

[10] L. O. Chekhov, UMN, 61:3 (2006), 93 | DOI | MR | Zbl

[11] P. Di Francesco, P. Ginsparg, J. Zinn-Justin, Phys. Rep., 254 (1995), 1 ; P. Ginsparg, G. Moore, Lectures on 2D Gravity and 2D String Theory, Cambridge Univ. Press, Cambridge, 1993 | DOI | MR

[12] F. David, Nucl. Phys. B, 257 (1985), 45 ; 543 ; V. A. Kazakov, Phys. Lett. B, 150 (1985), 282 ; J. Ambjørn, B. Durhuus, J. Frölich, Nucl. Phys. B, 257 (1985), 433 | DOI | MR | DOI | MR | Zbl | DOI | DOI | MR

[13] S. Das, A. Dhar, A. Sengupta, S. Wadia, Mod. Phys. Lett. A, 5 (1990), 1041 | DOI | MR | Zbl

[14] L. Alvarez-Gaumé, J. L. F Barbón, Č. Crnković, Nucl. Phys. B, 394 (1993), 383 | DOI | MR

[15] G. P. Korchemsky, Mod. Phys. Lett. A, 7 (1992), 3081 | DOI | MR | Zbl

[16] O. Aharony, M. Berkooz, E. Silverstein, JHEP, 08 (2001), 006 ; hep-th/0105309 | DOI | MR

[17] E. Witten, Multi-trace operators, boundary conditions, and AdS/CFT correspondence, hep-th/0112258

[18] A. O. Shishanin, “Some aspects of multitrace matrix models”, Particle Physics at the Year of 250th Anniversary of Moscow University, Proc. 12th Lomonosov Conf. on Elementary Particle Physics (Moscow, Russia, 2005), ed. A. I. Studenikin, World Sci. Publ., Singapore, 2006, 414 | DOI