@article{TMF_2007_152_3_a2,
author = {A. V. Tsiganov},
title = {Darboux{\textendash}Nijenhuis variables for open generalized {Toda} chains},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {440--456},
year = {2007},
volume = {152},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a2/}
}
A. V. Tsiganov. Darboux–Nijenhuis variables for open generalized Toda chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 440-456. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a2/
[1] Y. Kosmann-Schwarzbach, F. Magri, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35–81 | MR | Zbl
[2] F. Magri, “Eight lectures on integrable systems”, Integrability of Nonlinear Systems (Pondicherry, India, 1996), Lecture Notes in Phys., 495, eds. Y. Kosmann-Schwarzbach, B. Grammaticos, K. M. Tamizhmani, Springer, Berlin, 1997, 256–296 | DOI | MR | Zbl
[3] G. Falqui, F. Magri, M. Pedroni, J. Nonlinear Math. Phys., 8 (2001), 118–127 | DOI | MR | Zbl
[4] G. Falqui, M. Pedroni, Math. Phys. Anal. Geom., 6 (2003), 139–179 | DOI | MR | Zbl
[5] I. M. Gelfand, I. Ya. Dorfman, Funkts. analiz i ego prilozh., 13:4 (1979), 13–30 | MR | Zbl | Zbl
[6] B. Fuchssteiner, A. S. Fokas, Phys. D, 4 (1981), 47–66 | DOI | MR | Zbl
[7] A. Frölicher, A. Nijenhuis, Nederl. Akad. Wetensch. Proc. Ser. A, 59 (1956), 338–359 | DOI | MR | Zbl
[8] I. M. Gelfand, I. Zakharevich, “On the local geometry of a bi-Hamiltonian structure”, Gelfand Mathematical Seminars, 1990–1992, eds. L. Corwin et al., Birkäuser, Boston, 1993, 51–112 | DOI | MR | Zbl
[9] F. Magri, “Geometry and soliton equations”, La mécanique analytique de Lagrange et son héritage, Atti Accad. Sci. Torino Suppl., 124, Accad. Sci. Torino, Turin, 1990, 181–209 | MR
[10] T. Levi-Civita, Math. Ann., 59 (1904), 383–397 | DOI | MR | Zbl
[11] A. Ibort, F. Magri, G. Marmo, J. Geom. Phys., 33 (2000), 210–228 | DOI | MR | Zbl
[12] H. Flaschka, D. W. McLaughlin, Progr. Theoret. Phys., 55 (1976), 438–456 | DOI | MR | Zbl
[13] A. Das, S. Okubo, Ann. Phys., 190 (1989), 215–232 | DOI | MR
[14] R. L. Fernandes, J. Phys. A, 26 (1993), 3797–3803 | DOI | MR | Zbl
[15] J. Moser, “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Dynamical Systems, Theory and Applications (Seattle, 1974), Lecture Notes in Phys., 38, ed. J. Moser, Springer, Berlin, 1975, 467–497 | DOI | MR | Zbl
[16] L. Faybusovich, M. Gekhtman, Phys. Lett. A, 272 (2000), 236–244 | DOI | MR | Zbl
[17] K. L. Vaninsky, J. Geom. Phys., 46 (2003), 283–307 | DOI | MR | Zbl
[18] E. K. Sklyanin, “The quantum Toda chain”, Nonlinear Equations in Classical and Quantum Field Theory (Paris, 1983–1984), Lecture Notes in Phys., 226, ed. N. Sanchez, Springer, Berlin, 1985, 196–233 | DOI | MR | Zbl
[19] M. Atiyah, N. Hitchin, The Geometry and Dynamics of Magnetic Monopoles, Princeton Univ. Press, Princeton, NJ, 1988 | MR | Zbl
[20] A. V. Tsiganov, Regul. Chaotic. Dyn., 6 (2001), 307–326 | DOI | MR | Zbl
[21] E. K. Sklyanin, Progr. Theoret. Phys. Suppl., 118 (1995), 35–60 | DOI | MR | Zbl
[22] F. A. Smirnov, J. Phys. A, 31 (1998), 8953–8971 | DOI | MR | Zbl
[23] I. V. Komarov, A. V. Tsyganov, Vestn. LGU. Ser. fiz., khim., 1988, no. 2, 69–71 | MR | Zbl
[24] O. I. Bogoyavlensky, Commun. Math. Phys., 51 (1976), 201–209 | DOI | MR
[25] P. A. Damianou, Rev. Math. Phys., 16 (2004), 175–241 | DOI | MR | Zbl
[26] E. K. Sklyanin, J. Phys. A, 21 (1988), 2375–2389 | DOI | MR | Zbl
[27] V. B. Kuznetsov, A. V. Tsyganov, Zapiski nauch. sem. LOMI, 172 (1989), 89–98 | MR | Zbl
[28] V. B. Kuznetsov, J. Phys. A, 30 (1997), 2127–2138 | DOI | MR | Zbl
[29] V. V. Sokolov, A. V. Tsyganov, TMF, 133 (2002), 485–500 | DOI | MR | Zbl
[30] V. I. Inozemtsev, Commun. Math. Phys., 121 (1989), 629–638 | DOI | MR | Zbl