Darboux–Nijenhuis variables for open generalized Toda chains
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 440-456 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the possibility of using the Sklyanin method to construct Darboux–Nijenhuis variables of special form in the example of generalized open Toda chains associated with classical root systems.
Keywords: integrable system, bi-Hamiltonian manifold, separation of variables.
@article{TMF_2007_152_3_a2,
     author = {A. V. Tsiganov},
     title = {Darboux{\textendash}Nijenhuis variables for open generalized {Toda} chains},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {440--456},
     year = {2007},
     volume = {152},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a2/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Darboux–Nijenhuis variables for open generalized Toda chains
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 440
EP  - 456
VL  - 152
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a2/
LA  - ru
ID  - TMF_2007_152_3_a2
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Darboux–Nijenhuis variables for open generalized Toda chains
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 440-456
%V 152
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a2/
%G ru
%F TMF_2007_152_3_a2
A. V. Tsiganov. Darboux–Nijenhuis variables for open generalized Toda chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 440-456. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a2/

[1] Y. Kosmann-Schwarzbach, F. Magri, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35–81 | MR | Zbl

[2] F. Magri, “Eight lectures on integrable systems”, Integrability of Nonlinear Systems (Pondicherry, India, 1996), Lecture Notes in Phys., 495, eds. Y. Kosmann-Schwarzbach, B. Grammaticos, K. M. Tamizhmani, Springer, Berlin, 1997, 256–296 | DOI | MR | Zbl

[3] G. Falqui, F. Magri, M. Pedroni, J. Nonlinear Math. Phys., 8 (2001), 118–127 | DOI | MR | Zbl

[4] G. Falqui, M. Pedroni, Math. Phys. Anal. Geom., 6 (2003), 139–179 | DOI | MR | Zbl

[5] I. M. Gelfand, I. Ya. Dorfman, Funkts. analiz i ego prilozh., 13:4 (1979), 13–30 | MR | Zbl | Zbl

[6] B. Fuchssteiner, A. S. Fokas, Phys. D, 4 (1981), 47–66 | DOI | MR | Zbl

[7] A. Frölicher, A. Nijenhuis, Nederl. Akad. Wetensch. Proc. Ser. A, 59 (1956), 338–359 | DOI | MR | Zbl

[8] I. M. Gelfand, I. Zakharevich, “On the local geometry of a bi-Hamiltonian structure”, Gelfand Mathematical Seminars, 1990–1992, eds. L. Corwin et al., Birkäuser, Boston, 1993, 51–112 | DOI | MR | Zbl

[9] F. Magri, “Geometry and soliton equations”, La mécanique analytique de Lagrange et son héritage, Atti Accad. Sci. Torino Suppl., 124, Accad. Sci. Torino, Turin, 1990, 181–209 | MR

[10] T. Levi-Civita, Math. Ann., 59 (1904), 383–397 | DOI | MR | Zbl

[11] A. Ibort, F. Magri, G. Marmo, J. Geom. Phys., 33 (2000), 210–228 | DOI | MR | Zbl

[12] H. Flaschka, D. W. McLaughlin, Progr. Theoret. Phys., 55 (1976), 438–456 | DOI | MR | Zbl

[13] A. Das, S. Okubo, Ann. Phys., 190 (1989), 215–232 | DOI | MR

[14] R. L. Fernandes, J. Phys. A, 26 (1993), 3797–3803 | DOI | MR | Zbl

[15] J. Moser, “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Dynamical Systems, Theory and Applications (Seattle, 1974), Lecture Notes in Phys., 38, ed. J. Moser, Springer, Berlin, 1975, 467–497 | DOI | MR | Zbl

[16] L. Faybusovich, M. Gekhtman, Phys. Lett. A, 272 (2000), 236–244 | DOI | MR | Zbl

[17] K. L. Vaninsky, J. Geom. Phys., 46 (2003), 283–307 | DOI | MR | Zbl

[18] E. K. Sklyanin, “The quantum Toda chain”, Nonlinear Equations in Classical and Quantum Field Theory (Paris, 1983–1984), Lecture Notes in Phys., 226, ed. N. Sanchez, Springer, Berlin, 1985, 196–233 | DOI | MR | Zbl

[19] M. Atiyah, N. Hitchin, The Geometry and Dynamics of Magnetic Monopoles, Princeton Univ. Press, Princeton, NJ, 1988 | MR | Zbl

[20] A. V. Tsiganov, Regul. Chaotic. Dyn., 6 (2001), 307–326 | DOI | MR | Zbl

[21] E. K. Sklyanin, Progr. Theoret. Phys. Suppl., 118 (1995), 35–60 | DOI | MR | Zbl

[22] F. A. Smirnov, J. Phys. A, 31 (1998), 8953–8971 | DOI | MR | Zbl

[23] I. V. Komarov, A. V. Tsyganov, Vestn. LGU. Ser. fiz., khim., 1988, no. 2, 69–71 | MR | Zbl

[24] O. I. Bogoyavlensky, Commun. Math. Phys., 51 (1976), 201–209 | DOI | MR

[25] P. A. Damianou, Rev. Math. Phys., 16 (2004), 175–241 | DOI | MR | Zbl

[26] E. K. Sklyanin, J. Phys. A, 21 (1988), 2375–2389 | DOI | MR | Zbl

[27] V. B. Kuznetsov, A. V. Tsyganov, Zapiski nauch. sem. LOMI, 172 (1989), 89–98 | MR | Zbl

[28] V. B. Kuznetsov, J. Phys. A, 30 (1997), 2127–2138 | DOI | MR | Zbl

[29] V. V. Sokolov, A. V. Tsyganov, TMF, 133 (2002), 485–500 | DOI | MR | Zbl

[30] V. I. Inozemtsev, Commun. Math. Phys., 121 (1989), 629–638 | DOI | MR | Zbl