The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 419-429 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compute the largest dimension of the Abelian Lie subalgebras contained in the Lie algebra $\mathfrak g_n$ of $n\times n$ strictly upper triangular matrices, where $n\in\mathbb N\setminus\{1\}$. We do this by proving a conjecture, which we previously advanced, about this dimension. We introduce an algorithm and use it first to study the two simplest particular cases and then to study the general case.
Keywords: nilpotent Lie algebra, strictly upper triangular matrix.
Mots-clés : maximal Abelian dimension
@article{TMF_2007_152_3_a0,
     author = {J. C. Benjumea and J. Nunez and A. F. Tenorio},
     title = {The~maximal {Abelian} dimension of linear algebras formed by strictly upper triangular matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {419--429},
     year = {2007},
     volume = {152},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a0/}
}
TY  - JOUR
AU  - J. C. Benjumea
AU  - J. Nunez
AU  - A. F. Tenorio
TI  - The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 419
EP  - 429
VL  - 152
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a0/
LA  - ru
ID  - TMF_2007_152_3_a0
ER  - 
%0 Journal Article
%A J. C. Benjumea
%A J. Nunez
%A A. F. Tenorio
%T The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 419-429
%V 152
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a0/
%G ru
%F TMF_2007_152_3_a0
J. C. Benjumea; J. Nunez; A. F. Tenorio. The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 3, pp. 419-429. http://geodesic.mathdoc.fr/item/TMF_2007_152_3_a0/

[1] J. C. Benjumea, F. J. Echarte, J. Núñez, A. F. Tenorio, Extracta Math., 19:2 (2004), 269–277 | MR | Zbl

[2] V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Grad. Texts in Math., 102, Springer, New York, 1984 | DOI | MR | Zbl

[3] F. Iachello, Lie Algebras and Applications, Lecture Notes in Phys., 708, Springer, Berlin, 2006 | MR | Zbl

[4] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl | Zbl

[5] C. Cadeau, E. Woolgar, Class. Quantum Grav., 18 (2001), 527–542 | DOI | MR | Zbl

[6] S. Hervik, J. Geom. Phys., 52 (2004), 298–312 | DOI | MR | Zbl

[7] M. Boyarchenko, S. Levendorskii, Proc. Natl. Acad. Sci. USA, 102 (2005), 5663–5668 | DOI | MR | Zbl

[8] N. Jacobson, Bull. Amer. Math. Soc., 50 (1944), 431–436 | DOI | MR | Zbl

[9] I. Schur, J. Reine Angew. Math., 130 (1905), 66–76 | MR | Zbl