A~novel variational approach to pulsating solitons in the~cubic-quintic Ginzburg--Landau equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 339-355
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Comprehensive numerical simulations of pulse solutions of the cubic-quintic
Ginzburg–Landau equation (CGLE) reveal various intriguing and
entirely novel classes of solutions. In particular, there are five new
classes of pulse or solitary wave solutions, i.e., pulsating, creeping,
snake, erupting, and chaotic solitons that are not stationary in time. They
are spatially confined pulse-type structures whose envelopes exhibit
complicated temporal dynamics. The numerical simulations also reveal very
interesting bifurcation sequences of these pulses as the CGLE parameters are
varied. We address the issues of central interest in this area, i.e., 
the conditions for the occurrence of the five categories of dissipative solitons
and also the dependence of both their shape and their stability on 
the various CGLE parameters, i.e., the nonlinearity, dispersion, linear and
nonlinear gain, loss, and spectral filtering. Our predictions for 
the variation of the soliton amplitudes, widths, and periods with the CGLE
parameters agree with the simulation results. We here present detailed
results for the pulsating solitary waves. Their regimes of occurrence,
bifurcations, and the parameter dependences of the amplitudes, widths, and
periods agree with the simulation results. We will address snakes and chaotic
solitons in subsequent papers. This overall approach fails to address only
the dissipative solitons in one class, i.e., the exploding or erupting
solitons.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
variational formalism
Keywords: complex Ginzburg–Landau equation, pulsating soliton.
                    
                  
                
                
                Keywords: complex Ginzburg–Landau equation, pulsating soliton.
@article{TMF_2007_152_2_a9,
     author = {S. C. Mancas and S. R. Choudhury},
     title = {A~novel variational approach to pulsating solitons in the~cubic-quintic {Ginzburg--Landau} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--355},
     publisher = {mathdoc},
     volume = {152},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a9/}
}
                      
                      
                    TY - JOUR AU - S. C. Mancas AU - S. R. Choudhury TI - A~novel variational approach to pulsating solitons in the~cubic-quintic Ginzburg--Landau equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2007 SP - 339 EP - 355 VL - 152 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a9/ LA - ru ID - TMF_2007_152_2_a9 ER -
%0 Journal Article %A S. C. Mancas %A S. R. Choudhury %T A~novel variational approach to pulsating solitons in the~cubic-quintic Ginzburg--Landau equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2007 %P 339-355 %V 152 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a9/ %G ru %F TMF_2007_152_2_a9
S. C. Mancas; S. R. Choudhury. A~novel variational approach to pulsating solitons in the~cubic-quintic Ginzburg--Landau equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 339-355. http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a9/
