Cylindrical Kadomtsev–Petviashvili equation: Old and new results
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 304-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review results on the cylindrical Kadomtsev–Petviashvili (CKP) equation, also known as the Johnson equation. The presentation is based on our results. In particular, we show that the Lax pairs corresponding to the KP and the CKP equations are gauge equivalent. We also describe some important classes of solutions obtained using the Darboux transformation approach. We present plots of exact solutions of the CKP equation including finite-gap solutions.
Keywords: Johnson equation, finite-gap solution, lump.
Mots-clés : soliton, Darboux transformation
@article{TMF_2007_152_2_a7,
     author = {C. Klein and V. B. Matveev and A. O. Smirnov},
     title = {Cylindrical {Kadomtsev{\textendash}Petviashvili} equation: {Old} and new results},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {304--320},
     year = {2007},
     volume = {152},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a7/}
}
TY  - JOUR
AU  - C. Klein
AU  - V. B. Matveev
AU  - A. O. Smirnov
TI  - Cylindrical Kadomtsev–Petviashvili equation: Old and new results
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 304
EP  - 320
VL  - 152
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a7/
LA  - ru
ID  - TMF_2007_152_2_a7
ER  - 
%0 Journal Article
%A C. Klein
%A V. B. Matveev
%A A. O. Smirnov
%T Cylindrical Kadomtsev–Petviashvili equation: Old and new results
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 304-320
%V 152
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a7/
%G ru
%F TMF_2007_152_2_a7
C. Klein; V. B. Matveev; A. O. Smirnov. Cylindrical Kadomtsev–Petviashvili equation: Old and new results. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 304-320. http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a7/

[1] R. Johnson, J. Fluid Mech., 97 (1980), 701–719 | DOI | MR | Zbl

[2] V. D. Lipovskii, Izv. RAN. Ser. fiz. atm. okeana, 31 (1995), 664–871

[3] S. Leble, A. Sukhov, “On solutions of the Khokhlov–Zabolotskaya equation with KdV dispersion term”, Nonlinear Acoustics at the Turn of the Millennium, 15th Int. Symp. (Gottingen, Germany, 1999), AIP Conf. Proc., 524, eds. W. Lauterborn, T. Kurz, Amer. Inst. Phys., Melville, NY, 2000, 497–500 | DOI

[4] L. A. Bordag, A. R. Its, S. V. Manakov, V. B. Matveev, V. E. Zakharov, Phys. Lett. A, 63:3 (1977), 205–206 | DOI

[5] V. D. Lipovskii, V. B. Matveev, A. O. Smirnov, Zapiski nauchn. semin. LOMI, 150 (1986), 70–75 | MR | Zbl

[6] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Ser. Nonlin. Dyn., Springer, Berlin, 1991 | DOI | MR | Zbl

[7] B. B. Kadomtsev, V. I. Rydnik, Volny vokrug nas, Znanie, M., 1981

[8] I. Anders, A. Boutet de Monvel, J. Nonlinear Math. Phys., 7:3 (2000), 284–302 | DOI | MR | Zbl

[9] Yi-Tian Gao, Bo Tian, Phys. Lett. A, 301 (2002), 74–82 | DOI | MR | Zbl

[10] V. S. Dryuma, DAN SSSR, 268:1 (1983), 15–17 | MR | Zbl

[11] M. A. Sall, Diss. $\dots$ kand. fiz.-matem. nauk, LGU, 1983

[12] W. Oevel, W.-H. Steeb, Phys. Lett. A, 103:5 (1984), 239–242 | DOI | MR

[13] V. B. Matveev, Lett. Math. Phys., 3 (1979), 216–219 | MR

[14] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer Ser. Nonlin. Dyn., Springer, Berlin, 1994 | Zbl

[15] V. D. Lipovskii, DAN SSSR, 286:2 (1986), 334–338 | MR

[16] J. Frauendiener, C. Klein, J. Comput. Appl. Math., 167 (2004), 193–218 | DOI | MR | Zbl

[17] J. Frauendiener, C. Klein, Lett. Math. Phys., 76 (2006), 249–267 | DOI | MR | Zbl

[18] C. Klein, O. Richter, Ernst Equation and Riemann Surfaces. Analytical and Numerical Methods, Lect. Notes Phys., 685, Springer, Berlin, 2005 | MR | Zbl