Fermionic construction of the partition function for multimatrix models and the multicomponent Toda lattice hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 265-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use $p$-component fermions, $p=2,3,\dots$, to represent $(2p-2)N$-fold integrals as a fermionic vacuum expectation. This yields a fermionic representation for various $(2p-2)$-matrix models. We discuss links with the $p$-component Kadomtsev–Petviashvili hierarchy and also with the $p$-component Toda lattice hierarchy. We show that the set of all but two flows of the $p$-component Toda lattice hierarchy changes standard matrix models to new ones.
Keywords: matrix model, tau function of multicomponent Toda chain, integrable system.
@article{TMF_2007_152_2_a4,
     author = {J. Harnad and A. Yu. Orlov},
     title = {Fermionic construction of the~partition function for multimatrix models and the~multicomponent {Toda} lattice hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {265--277},
     year = {2007},
     volume = {152},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a4/}
}
TY  - JOUR
AU  - J. Harnad
AU  - A. Yu. Orlov
TI  - Fermionic construction of the partition function for multimatrix models and the multicomponent Toda lattice hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 265
EP  - 277
VL  - 152
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a4/
LA  - ru
ID  - TMF_2007_152_2_a4
ER  - 
%0 Journal Article
%A J. Harnad
%A A. Yu. Orlov
%T Fermionic construction of the partition function for multimatrix models and the multicomponent Toda lattice hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 265-277
%V 152
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a4/
%G ru
%F TMF_2007_152_2_a4
J. Harnad; A. Yu. Orlov. Fermionic construction of the partition function for multimatrix models and the multicomponent Toda lattice hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a4/

[1] A. Borodin, A. Soshnikov, J. Statist. Phys., 113 (2003), 595 ; math-ph/0212063 | DOI | MR | Zbl

[2] P. Zinn-Justin, J.-B. Zuber, J. Phys. A, 36 (2003), 3173 ; math-ph/0209019 | DOI | MR | Zbl

[3] A. Yu. Orlov, Internat. J. Modern Phys. A, 19:suppl2 (2004), 276 ; nlin.SI/0209063 | DOI | MR | Zbl

[4] A. Yu. Orlov, T. Shiota, Phys. Lett. A, 343 (2005), 384 ; math-ph/0501017 | DOI | MR | Zbl

[5] J. Harnad, A. Yu. Orlov, J. Phys. A, 39 (2006), 8783 | DOI | MR | Zbl

[6] M. L. Mehta, Random Matrices, 2nd ed., Academic Press, Boston, MA, 1991 | MR | Zbl

[7] C. Itzykson, J.-B. Zuber, J. Math. Phys., 21 (1980), 411 | DOI | MR | Zbl

[8] S. Kharchev, A. Marshakov, A. Mironov et al., Nucl. Phys. B, 366 (1991), 569 | DOI | MR

[9] B. Eynard, M. L. Mehta, J. Phys. A, 31 (1998), 4449 | DOI | MR | Zbl

[10] M. Bertola, B. Eynard, J. Harnad, Commun. Math. Phys., 229 (2002), 73 | DOI | MR | Zbl

[11] A. Gerasimov, A. Marshakov, A. Mironov et al., Nucl. Phys. B, 357 (1991), 565 | DOI | MR

[12] Dzh. Kharnad, A. Yu. Orlov, TMF, 137 (2003), 375 | DOI | MR

[13] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, 1981), World Scientific, Singapore, 1983, 39 | MR | Zbl

[14] M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci., 19 (1983), 943 | DOI | MR | Zbl

[15] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1 | MR | Zbl

[16] V. G. Kac, J. W. van de Leur, “The $n$-component $KP$ hierarchy and representation theory”, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 302 | DOI | MR | Zbl

[17] J. Harnad, A. Yu. Orlov, “Matrix integrals as Borel sums of Schur function expansions”, SPT 2002: Symmetries and Perturbation Theory (Cala Gonone, 2002), eds. S. Abenda, G. Gaeta, World Scientific, River Edge, NJ, 2002, 116 ; nlin.SI/0209035 | MR