Keywords: gauge-natural bundle, second variational derivative, generalized Jacobi morphism.
@article{TMF_2007_152_2_a12,
author = {M. Palese and E. Winterroth},
title = {The~relation between the {Jacobi} morphism and the {Hessian} in gauge-natural field theories},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {377--389},
year = {2007},
volume = {152},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a12/}
}
TY - JOUR AU - M. Palese AU - E. Winterroth TI - The relation between the Jacobi morphism and the Hessian in gauge-natural field theories JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2007 SP - 377 EP - 389 VL - 152 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a12/ LA - ru ID - TMF_2007_152_2_a12 ER -
M. Palese; E. Winterroth. The relation between the Jacobi morphism and the Hessian in gauge-natural field theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 377-389. http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a12/
[1] H. Goldschmidt, S. Sternberg, Ann. Inst. Fourier, 23:1 (1973), 203–267 | DOI | MR | Zbl
[2] A. V. Bocharov, A. M. Verbovetskii, A. M. Vinogradovi dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997 | MR | Zbl
[3] I. Kolář, P. W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993 | MR | Zbl
[4] D. Krupka, “Some geometric aspects of variational problems in fibred manifolds”, Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica, 14, J. E. Purkyně Univ., Brno, 1973, 1–65 ; math-ph/0110005
[5] B. A. Kuperschmidt, “Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism”, Geometric Methods in Mathematical Physics, Proc. NSF-CBMS Conf. (Lowell, 1979), Lect. Notes Math., 775, eds. G. Kaiser, J. E. Marsden, Springer, Berlin, 1980, 162–218 | DOI | MR | Zbl
[6] P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Grad. Texts in Math., 107, Springer, New York, 1993 | DOI | MR | Zbl
[7] R. S. Palais, Foundations of Global Non-linear Analysis, Benjamin, New York–Amsterdam, 1968 | MR | Zbl
[8] D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lect. Note Ser., 142, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[9] A. M. Vinogradov, J. Math. Anal. Appl., 100:1 (1984), 1–40 ; 41–129 | DOI | MR | Zbl | DOI | MR | Zbl
[10] F. Takens, J. Diff. Geom., 14 (1979), 543–562 | DOI | MR | Zbl
[11] W. M. Tulczyjew, Bull. Soc. Math. France, 105 (1977), 419–431 | DOI | MR | Zbl
[12] A. M. Vinogradov, DAN SSSR, 236:2 (1977), 284–287 | MR | Zbl
[13] A. M. Vinogradov, DAN SSSR, 238:5 (1978), 1028–1031 | MR | Zbl
[14] R. Vitolo, Diff. Geom. Appl., 10:3 (1999), 225–255 | DOI | MR | Zbl
[15] P. G. Bergmann, Phys. Rev., 75 (1949), 680–685 | DOI | MR | Zbl
[16] E. Neter, “Invariantnye variatsionnye zadachi”, Variatsionnye printsipy mekhaniki, Fizmatlit, M., 1959, 604–630 | MR | Zbl
[17] L. Fatibene, M. Francaviglia, M. Palese, Math. Proc. Cambridge Philos. Soc., 130 (2001), 555–569 | DOI | MR | Zbl
[18] P. Matteucci, Rep. Math. Phys., 52:1 (2003), 115–139 | DOI | MR | Zbl
[19] J. L. Anderson, P. G. Bergmann, Phys. Rev., 83:5 (1951), 1018–1025 | DOI | MR | Zbl
[20] M. Palese, E. Winterroth, Arch. Math. (Brno), 41:3 (2005), 289–310 | MR | Zbl
[21] M. Palese, E. Winterroth, Rep. Math. Phys., 54:3 (2004), 349–364 | DOI | MR | Zbl
[22] M. Francaviglia, M. Palese, E. Winterroth, Rep. Math. Phys., 56:1 (2005), 11–22 ; math-ph/0407054 | DOI | MR | Zbl
[23] M. Francaviglia, M. Palese, E. Winterroth, “Second variational derivative of gauge-natural invariant Lagrangians and conservation laws”, Differential Geometry and its Applications, Proc. IX Int. Conf. (Prague, Czech Republic, 2004), eds. J. Bures et al., Matfyzpress, Prague, 2005, 591–604 | MR | Zbl
[24] M. Palese, E. Winterroth, “Gauge-natural field theories and Noether theorems: canonical covariant conserved currents”, Geometry and Physics (Srni, CZ, 2005), Rend. Circ. Mat., Palermo, 2006, 161–174 | MR | Zbl
[25] M. Francaviglia, M. Palese, R. Vitolo, Diff. Geom. Appl., 22:1 (2005), 105–120 | DOI | MR | Zbl
[26] M. Giaquinta, S. Hildebrandt, Calculus of Variations. Vol. I. The Lagrangian Formalism, Grundlehren Math. Wiss., 310, Springer, Berlin, 1996 | MR | Zbl
[27] R. Vitolo, Math. Proc. Cambridge Philos. Soc., 125:1 (1999), 321–333 | DOI | MR | Zbl
[28] D. J. Eck, Mem. Amer. Math. Soc., 33:247 (1981), 1–48 | MR | Zbl
[29] I. Kolář, J. Geom. Phys., 1:2 (1984), 127–137 | DOI | MR | Zbl
[30] I. Kolář, R. Vitolo, Math. Proc. Cambridge Philos. Soc., 135:2 (2003), 277–290 | DOI | MR | Zbl
[31] D. Krupka, “Variational sequences on finite order jet spaces”, Differential Geometry and its Applications (Brno, Czechoslovakia, 1989), eds. J. Janyška, D. Krupka, World Scientific, Singapore, 1990, 236–254 | MR | Zbl
[32] M. Francaviglia, M. Palese, R. Vitolo, Czechoslovak Math. J., 52(127):1 (2002), 197–213 | DOI | MR | Zbl
[33] M. Godina, P. Matteucci, Int. J. Geom. Meth. Mod. Phys., 2 (2005), 159–188 | DOI | MR
[34] A. Trautman, Commun. Math. Phys., 6 (1967), 248–261 | DOI | MR | Zbl
[35] L. Mangiarotti, G. Sardanashvily, Connections in Classical and Quantum Field Theory, World Scientific, Singapore, 2000 | MR | Zbl