Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 368-376

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the associativity equations of two-dimensional topological quantum field theories are very natural reductions of the fundamental nonlinear equations of the theory of submanifolds in pseudo-Euclidean spaces and give a natural class of flat torsionless potential submanifolds. We show that all flat torsionless potential submanifolds in pseudo-Euclidean spaces bear natural structures of Frobenius algebras on their tangent spaces. These Frobenius structures are generated by the corresponding flat first fundamental form and the set of the second fundamental forms of the submanifolds (in fact, the structural constants are given by the set of the Weingarten operators of the submanifolds). We prove that each $N$-dimensional Frobenius manifold can be locally represented as a flat torsionless potential submanifold in a $2N$-dimensional pseudo-Euclidean space. By our construction, this submanifold is uniquely determined up to motions. Moreover, we consider a nonlinear system that is a natural generalization of the associativity equations, namely, the system describing all flat torsionless submanifolds in pseudo-Euclidean spaces, and prove that this system is integrable by the inverse scattering method.
Keywords: Frobenius manifold, submanifold in a pseudo-Euclidean space, flat submanifold, submanifold with flat normal bundle, flat submanifold with zero torsion, associativity equation in two-dimensional topological quantum field theory, integrable system.
@article{TMF_2007_152_2_a11,
     author = {O. I. Mokhov},
     title = {Theory of submanifolds, associativity equations in {2D} topological quantum field theories, and {Frobenius} manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--376},
     publisher = {mathdoc},
     volume = {152},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a11/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 368
EP  - 376
VL  - 152
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a11/
LA  - ru
ID  - TMF_2007_152_2_a11
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 368-376
%V 152
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a11/
%G ru
%F TMF_2007_152_2_a11
O. I. Mokhov. Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 368-376. http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a11/