Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 368-376
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that the associativity equations of two-dimensional topological
quantum field theories are very natural reductions of the fundamental
nonlinear equations of the theory of submanifolds in pseudo-Euclidean spaces
and give a natural class of flat torsionless potential submanifolds. We
show that all flat torsionless potential submanifolds in pseudo-Euclidean
spaces bear natural structures of Frobenius algebras on their tangent spaces.
These Frobenius structures are generated by the corresponding flat first
fundamental form and the set of the second fundamental forms of 
the submanifolds (in fact, the structural constants are given by the set of
the Weingarten operators of the submanifolds). We prove that each
$N$-dimensional Frobenius manifold can be locally represented as a flat
torsionless potential submanifold in a $2N$-dimensional pseudo-Euclidean
space. By our construction, this submanifold is uniquely determined up to
motions. Moreover, we consider a nonlinear system that is a natural
generalization of the associativity equations, namely, the system describing
all flat torsionless submanifolds in pseudo-Euclidean spaces, and prove that
this system is integrable by the inverse scattering method.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Frobenius manifold, submanifold in a pseudo-Euclidean space, flat submanifold, submanifold with flat normal bundle, flat submanifold with zero torsion, associativity equation in two-dimensional topological quantum field theory, integrable system.
                    
                  
                
                
                @article{TMF_2007_152_2_a11,
     author = {O. I. Mokhov},
     title = {Theory of submanifolds, associativity equations in {2D} topological quantum field theories, and {Frobenius} manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--376},
     publisher = {mathdoc},
     volume = {152},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a11/}
}
                      
                      
                    TY - JOUR AU - O. I. Mokhov TI - Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2007 SP - 368 EP - 376 VL - 152 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a11/ LA - ru ID - TMF_2007_152_2_a11 ER -
%0 Journal Article %A O. I. Mokhov %T Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds %J Teoretičeskaâ i matematičeskaâ fizika %D 2007 %P 368-376 %V 152 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a11/ %G ru %F TMF_2007_152_2_a11
O. I. Mokhov. Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 368-376. http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a11/
