Nonlinear gravitational waves, their polarization, and realistic sources
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 225-240

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe exact solutions of the Einstein field equations invariant under a non-Abelian two-dimensional Lie algebra of Killing fields. A subclass of these gravitational fields have a wavelike character. We show that they have spin $1$. We also discuss some indirect observational effects. In particular, we show that vector cosmological perturbations can no longer be negligible in the presence of topological defects, which can be verified by examining the anisotropies of the cosmic microwave background.
Keywords: metric, Killing vector, gravitational wave.
@article{TMF_2007_152_2_a1,
     author = {F. Canfora and L. Parisi and G. Vilasi},
     title = {Nonlinear gravitational waves, their polarization, and realistic sources},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {225--240},
     publisher = {mathdoc},
     volume = {152},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a1/}
}
TY  - JOUR
AU  - F. Canfora
AU  - L. Parisi
AU  - G. Vilasi
TI  - Nonlinear gravitational waves, their polarization, and realistic sources
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 225
EP  - 240
VL  - 152
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a1/
LA  - ru
ID  - TMF_2007_152_2_a1
ER  - 
%0 Journal Article
%A F. Canfora
%A L. Parisi
%A G. Vilasi
%T Nonlinear gravitational waves, their polarization, and realistic sources
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 225-240
%V 152
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a1/
%G ru
%F TMF_2007_152_2_a1
F. Canfora; L. Parisi; G. Vilasi. Nonlinear gravitational waves, their polarization, and realistic sources. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 2, pp. 225-240. http://geodesic.mathdoc.fr/item/TMF_2007_152_2_a1/