Algebraic properties of Gardner's deformations for integrable systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 101-117
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We formulate an algebraic definition of Gardner's deformations for completely
integrable bi-Hamiltonian evolutionary systems. The proposed approach extends
the class of deformable equations and yields new integrable evolutionary and
hyperbolic Liouville-type systems. We find an exactly solvable two-component
extension of the Liouville equation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Gardner's deformation, integrable family, adjoint system, Hamiltonian, recursion relation.
                    
                  
                
                
                @article{TMF_2007_152_1_a7,
     author = {A. V. Kiselev},
     title = {Algebraic properties of {Gardner's} deformations for integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {101--117},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a7/}
}
                      
                      
                    A. V. Kiselev. Algebraic properties of Gardner's deformations for integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 101-117. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a7/
