Algebraic properties of Gardner's deformations for integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 101-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate an algebraic definition of Gardner's deformations for completely integrable bi-Hamiltonian evolutionary systems. The proposed approach extends the class of deformable equations and yields new integrable evolutionary and hyperbolic Liouville-type systems. We find an exactly solvable two-component extension of the Liouville equation.
Keywords: Gardner's deformation, integrable family, adjoint system, Hamiltonian, recursion relation.
@article{TMF_2007_152_1_a7,
     author = {A. V. Kiselev},
     title = {Algebraic properties of {Gardner's} deformations for integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {101--117},
     year = {2007},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a7/}
}
TY  - JOUR
AU  - A. V. Kiselev
TI  - Algebraic properties of Gardner's deformations for integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 101
EP  - 117
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a7/
LA  - ru
ID  - TMF_2007_152_1_a7
ER  - 
%0 Journal Article
%A A. V. Kiselev
%T Algebraic properties of Gardner's deformations for integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 101-117
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a7/
%G ru
%F TMF_2007_152_1_a7
A. V. Kiselev. Algebraic properties of Gardner's deformations for integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 101-117. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a7/

[1] R. M. Miura, C. S. Gardner, M. D. Kruskal, J. Math. Phys., 9 (1968), 1204–1209 | DOI | MR | Zbl

[2] P. Mathieu, “Open problems for the super KdV equations”, Bäcklund and Darboux Transformations. The Geometry of Solitons (Halifax, Canada, 1999), CRM Proc. Lecture Notes, 29, Amer. Math. Soc., Providence, RI, 2001, 325–334 | DOI | MR | Zbl

[3] P. Labelle, P. Mathieu, J. Math. Phys., 32 (1991), 923–927 | DOI | MR | Zbl

[4] A. Karasu, A. V. Kiselev, J. Phys. A, 39 (2006), 11453–11460 | DOI | MR | Zbl

[5] B. A. Kupershmidt, Proc. Roy. Irish Acad. Sect. A, 83:1 (1983), 45–74 | MR | Zbl

[6] P. Kersten, I. Krasil'shchik, A. Verbovetsky, “Nonlocal constructions in the geometry of PDE”, Symmetry in Nonlinear Mathematical Physics (Kyiv, Ukraine, 2003), Proc. Inst. Math. NAS Ukraine, 50, Inst. Math. NAS Ukraine, Kyiv, 2004, 412–423 | MR | Zbl

[7] I. Krasil'shchik, A. Verbovetsky, Homological Methods in Equations of Mathematical Physics, Open Education and Sciences, Opava, 1998

[8] A. V. Kiselev, TMF, 144 (2005), 83–93 | DOI | MR | Zbl

[9] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhniki. Sovrem. problemy matem. Noveishie dostizheniya, 24, VINITI, M., 1984, 81–180 | MR | Zbl

[10] A. V. Borisov, S. A. Zykov, TMF, 115 (1998), 199–214 | DOI | MR | Zbl

[11] G. Carlet, B. Dubrovin, Y. Zhang, Mosc. Math. J., 4:2 (2004), 313–332 ; B. Dubrovin, Y. Zhang, Commun. Math. Phys., 198 (1998), 311–361 | MR | Zbl | DOI | MR | Zbl

[12] E. Getzler, Duke Math. J., 111 (2002), 535–560 | DOI | MR | Zbl

[13] P. Kersten, I. Krasil'shchik, A. Verbovetsky, J. Geom. Phys., 50:1–4 (2004), 273–302 | DOI | MR | Zbl

[14] P. Mathieu, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl

[15] A. V. Kiselev, T. Wolf, SIGMA, 2 (2006), Paper 030, 19 pp. | DOI | MR | Zbl

[16] M. Gerstenhaber, S. D. Schack, “Algebraic cohomology and deformation theory”, Deformation Theory of Algebras and Structures and Applications (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci., 247, eds. M. Gerstenhaber, M. Hazelwinkel, Kluwer, Dordrecht, 1988, 11–264 | MR | Zbl

[17] A. V. Kiselev, Vestn. MGU, Ser. 3. Fiz. Astr., 2002, no. 6, 22–26 | MR | Zbl

[18] M. V. Pavlov, J. Nonlinear Math. Phys., 9:Suppl. 1 (2002), 173–191 | DOI | MR

[19] D. K. Demskoi, J. Nonlinear Math. Phys., 14 (2007), 147–156 | DOI | MR | Zbl

[20] A. V. Zhiber, V. V. Sokolov, UMN, 56:1 (2001), 63–106 | DOI | MR | Zbl

[21] S. Igonin, J. Geom. Phys., 56 (2006), 939–998 | DOI | MR | Zbl