Rank-$k$ solutions of hydrodynamic-type systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 83-100

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a variant of the conditional symmetry method for obtaining rank-$k$ solutions in terms of Riemann invariants for first-order quasilinear hyperbolic systems of PDEs in many dimensions and discuss examples of applying the proposed approach to fluid dynamics equations in $n+1$ dimensions in detail. We obtain several new types of algebraic, rational, and soliton-like solutions (including kinks, bumps, and multiple-wave solutions).
Keywords: conditional symmetry, rank-$k$ solution of partial differential equations.
Mots-clés : Riemann invariant
@article{TMF_2007_152_1_a6,
     author = {A. M. Grundland and B. Huard},
     title = {Rank-$k$ solutions of hydrodynamic-type systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {83--100},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/}
}
TY  - JOUR
AU  - A. M. Grundland
AU  - B. Huard
TI  - Rank-$k$ solutions of hydrodynamic-type systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 83
EP  - 100
VL  - 152
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/
LA  - ru
ID  - TMF_2007_152_1_a6
ER  - 
%0 Journal Article
%A A. M. Grundland
%A B. Huard
%T Rank-$k$ solutions of hydrodynamic-type systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 83-100
%V 152
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/
%G ru
%F TMF_2007_152_1_a6
A. M. Grundland; B. Huard. Rank-$k$ solutions of hydrodynamic-type systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 83-100. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/