Rank-$k$ solutions of hydrodynamic-type systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 83-100
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a variant of the conditional symmetry method for obtaining rank-$k$ solutions in terms of Riemann invariants for first-order quasilinear hyperbolic systems of PDEs in many dimensions and discuss examples of applying the proposed approach to fluid dynamics equations in $n+1$ dimensions in detail. We obtain several new types of algebraic, rational, and soliton-like solutions (including kinks, bumps, and multiple-wave solutions).
Keywords: conditional symmetry, rank-$k$ solution of partial differential equations.
Mots-clés : Riemann invariant
@article{TMF_2007_152_1_a6,
     author = {A. M. Grundland and B. Huard},
     title = {Rank-$k$ solutions of hydrodynamic-type systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {83--100},
     year = {2007},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/}
}
TY  - JOUR
AU  - A. M. Grundland
AU  - B. Huard
TI  - Rank-$k$ solutions of hydrodynamic-type systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 83
EP  - 100
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/
LA  - ru
ID  - TMF_2007_152_1_a6
ER  - 
%0 Journal Article
%A A. M. Grundland
%A B. Huard
%T Rank-$k$ solutions of hydrodynamic-type systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 83-100
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/
%G ru
%F TMF_2007_152_1_a6
A. M. Grundland; B. Huard. Rank-$k$ solutions of hydrodynamic-type systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 83-100. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/

[1] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lect. Note Ser., 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[2] P. A. Clarkson, P. Winternitz, “Symmetry reduction and exact solutions of nonlinear partial differential equations”, The Painlevé Property. One Century Later, CRM Ser. Math. Phys., 26, ed. R. Conte, Springer, New York, 1999, 597–669 | MR | Zbl

[3] E. V. Ferapontov, K. R. Khusnutdinova, Comm. Math. Phys., 248 (2004), 187–206 | DOI | MR | Zbl

[4] P. J. Olver, E. M. Vorobev, “Nonclassical and conditional symmetries”, CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 3. New Trends in Theoretical Development and Computational Methods, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1996 | MR | Zbl

[5] A. M. Grundland, J. Tafel, J. Math. Anal. Appl., 198 (1996), 879–892 | DOI | MR | Zbl

[6] A. M. Grundland, B. Huard, J. Nonlinear Math. Phys., 13:3 (2006), 393–419 | DOI | MR | Zbl

[7] R. von Mises, Mathematical Theory of Compressible Fluid Flow, Appl. Math. Mech., 3, Academic Press, New York, 1958 | MR | Zbl

[8] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR | MR | Zbl | Zbl

[9] F. P. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | MR | Zbl | Zbl

[10] A. M. Grundland, L. Lalague, Canad. J. Phys., 72:7–8 (1994), 362–374 | DOI | MR | Zbl

[11] A. M. Grundland, L. Lalague, J. Phys. A, 29 (1996), 1723–1739 | DOI | MR | Zbl

[12] Z. Peradzynski, Arch. Mech., 9:2 (1972), 287–303 | MR | Zbl

[13] A. Jeffrey, Quasilinear Hyperbolic Systems and Waves, Res. Notes Math., 5, Pitman Publ., London–San Francisco–Melbourne, 1976 | MR | Zbl

[14] P. Winternitz, A. M. Grundland, J. A. Tuszynski, J. Math. Phys., 28:9 (1987), 2194–2212 | DOI | MR | Zbl