Rank-$k$ solutions of hydrodynamic-type systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 83-100
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present a variant of the conditional symmetry method for obtaining
rank-$k$ solutions in terms of Riemann invariants for first-order quasilinear
hyperbolic systems of PDEs in many dimensions and discuss examples of
applying the proposed approach to fluid dynamics equations in $n+1$
dimensions in detail. We obtain several new types of algebraic, rational, and
soliton-like solutions (including kinks, bumps, and multiple-wave
solutions).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
conditional symmetry, rank-$k$ solution of partial differential equations.
Mots-clés : Riemann invariant
                    
                  
                
                
                Mots-clés : Riemann invariant
@article{TMF_2007_152_1_a6,
     author = {A. M. Grundland and B. Huard},
     title = {Rank-$k$ solutions of hydrodynamic-type systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {83--100},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/}
}
                      
                      
                    A. M. Grundland; B. Huard. Rank-$k$ solutions of hydrodynamic-type systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 83-100. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a6/
