Mots-clés : Cole–Hopf transformation
@article{TMF_2007_152_1_a5,
author = {A. Dimakis and F. M\"uller-Hoissen},
title = {Burgers and {Kadomtsev{\textendash}Petviashvili} hierarchies: {A~functional}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {66--82},
year = {2007},
volume = {152},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a5/}
}
A. Dimakis; F. Müller-Hoissen. Burgers and Kadomtsev–Petviashvili hierarchies: A functional. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 66-82. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a5/
[1] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What Is Integrability?, Springer Ser. Nonlinear Dynam., ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl
[2] D. V. Choodnovsky, G. V. Choodnovsky, Nuovo Cimento B, 40 (1977), 339–352 | DOI | MR
[3] D. Levi, O. Ragnisco, M. Bruschi, Nuovo Cimento B, 74 (1983), 33–51 | DOI | MR
[4] M. Bruschi, O. Ragnisco, J. Math. Phys., 26 (1985), 943–945 | DOI | MR | Zbl
[5] A. Pickering, J. Math. Phys., 35 (1994), 821–833 | DOI | MR | Zbl
[6] A. S. Fokas, Q. M. Liu, Phys. Rev. Lett., 72 (1994), 3293–3296 | DOI | MR | Zbl
[7] H. Tasso, J. Phys. A, 29 (1996), 7779–7784 | DOI | MR | Zbl
[8] B. A. Kupershmidt, KP or mKP. Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems, Math. Surveys Monogr., 78, AMS, Providence, 2000 | DOI | MR | Zbl
[9] B. A. Kupershmidt, J. Nonlinear Math. Phys., 12 (2005), 539–549 | DOI | MR | Zbl
[10] A. Dimakis, F. Müller-Hoissen, Nonassociativity and integrable hierarchies, nlin.SI/0601001
[11] F. Guil, M. Mañas, G. Álvarez, Phys. Lett. A, 190 (1994), 49–52 | DOI | MR | Zbl
[12] A. Dimakis, F. Müller-Hoissen, J. Phys. A, 39 (2006), 9169–9186 | DOI | MR | Zbl
[13] A. Dimakis, F. Müller-Hoissen, J. Phys. A, 39 (2006), 14015–14033 | DOI | MR | Zbl
[14] M. Gekhtman, A. Kasman, J. Geom. Phys., 56 (2006), 282–309 | DOI | MR | Zbl
[15] M. Sato, Y. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold”, Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud., 81, eds. H. Fujita, P. D. Lax, G. Strang, North-Holland, Amsterdam, 1983, 259–271 | DOI | MR | Zbl
[16] E. Date, M. Jinbo, T. Miwa, J. Phys. Soc. Japan, 51 (1982), 4116–4124 | DOI | MR
[17] V. E. Adler, A. I. Bobenko, Yu. B. Suris, Commun. Math. Phys., 233 (2003), 513–543 | DOI | MR | Zbl
[18] A. I. Bobenko, Yu. B. Suris, Lett. Math. Phys., 61 (2002), 241–254 | DOI | MR | Zbl
[19] A. Dimakis, F. Müller-Hoissen, T. Striker, J. Phys. A, 26 (1993), 1927–1949 | DOI | MR | Zbl
[20] A. Dimakis, F. Müller-Hoissen, T. Striker, Phys. Lett. B, 300 (1993), 141–144 | DOI | MR
[21] L.-L. Chau, J. C. Shaw, H. C. Yen, Commun. Math. Phys., 149 (1992), 263–278 | DOI | MR | Zbl
[22] E. Hopf, Commun. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl
[23] J. D. Cole, Quart. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl
[24] J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl
[25] K. T. Joseph, A. S. Vasudeva Murthy, NoDEA Nonlinear Diff. Equations Appl., 8 (2001), 173–193 | DOI | MR | Zbl
[26] D. J. Arrigo, F. Hickling, J. Phys. A, 35 (2002), L389–L399 | DOI | MR | Zbl
[27] M. Hamanaka, K. Toda, J. Phys. A, 36 (2003), 11981–11998 | DOI | MR | Zbl
[28] L. Martina, O. K. Pashaev, Burgers' equation in noncommutative space-time, hep-th/0302055 | MR
[29] A. S. Fokas, Invariants, Lie-Bäcklund operators, and Bäcklund transformations, PhD thesis, California Institute of Technology, Pasadena, CA, 1979 | MR
[30] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991 | DOI | MR | Zbl
[31] L. V. Bogdanov, B. G. Konopelchenko, J. Math. Phys., 39 (1998), 4701–4728 | DOI | MR | Zbl
[32] L. V. Bogdanov, Analytic-Bilinear Approach to Integrable Hierarchies, Math. Appl., 493, Kluwer, Dordrecht, 1999 | MR | Zbl
[33] J. Dorfmeister, E. Neher, J. Szmigielski, Quart. J. Math., 40 (1989), 161–195 | DOI | MR | Zbl
[34] V. B. Matveev, Lett. Math. Phys., 3 (1979), 213–216 | DOI | MR | Zbl
[35] W. Oevel, Phys. A, 195 (1993), 533–576 | DOI | MR | Zbl
[36] Q. P. Liu, M. Mañas, J. Nonlinear Sci., 9 (1999), 213–232 | DOI | MR
[37] W. T. Reid, Riccati Differential Equations, Math. Sci. Eng., 86, Academic Press, New York, 1972 | MR | Zbl
[38] H. Abou-Kandil, G. Freiling, V. Ionescu, G. Jank, Matrix Riccati Equations in Control and Systems Theory, Systems Control Found. Appl., Birkhäuser, Basel, 2003 | MR | Zbl
[39] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, V. B. Matveev, Phys. Lett. A, 63 (1977), 205–206 | DOI
[40] G. Biondini, S. Chakravarty, J. Math. Phys., 47 (2006), 033514 | DOI | MR | Zbl
[41] A. Dimakis, F. Müller-Hoissen, Czech. J. Phys., 56 (2006), 1123–1130 ; nlin.PS/0608017 | DOI | MR | Zbl