Half-line solutions of a nonlinear heat conduction problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 58-65
Cet article a éte moissonné depuis la source Math-Net.Ru
We solve a half-line problem for a nonlinear diffusion equation with a given time-dependent thermal conductivity at the origin. The problem reduces to a linear Volterra integral equation, which is solvable by Picard's process of successive approximations. We analyze some explicit examples numerically.
Keywords:
nonlinear, heat conduction, half-line.
@article{TMF_2007_152_1_a4,
author = {S. De Lillo and G. Lupo and M. Sommacal},
title = {Half-line solutions of a~nonlinear heat conduction problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {58--65},
year = {2007},
volume = {152},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a4/}
}
S. De Lillo; G. Lupo; M. Sommacal. Half-line solutions of a nonlinear heat conduction problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 58-65. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a4/
[1] P. L. Sachdev, Nonlinear Diffusive Waves, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[2] G. Bluman, S. Kumei, J. Math. Phys., 21 (1980), 1019 | DOI | MR | Zbl
[3] M. L. Storm, J. Appl. Phys., 22 (1951), 940 | DOI | MR | Zbl
[4] S. De Lillo, G. Lupo, G. Sanchini, J. Phys. A, 39 (2006), 7299 | DOI | MR | Zbl
[5] F. Trikomi, Differentsialnye uravneniya, IL, M., 1960 | MR | MR | Zbl | Zbl
[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran. The Art of Scientific Computing, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl