Metric fluctuations, entropy, and the Wheeler–DeWitt equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 32-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantization using quantum potentials is described in terms of momentum fluctuations, and it is related to Fisher information and entropy.
Mots-clés : information, gravitation
Keywords: entropy, quantum mechanics.
@article{TMF_2007_152_1_a2,
     author = {R. W. Carroll},
     title = {Metric fluctuations, entropy, and {the~Wheeler{\textendash}DeWitt} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--44},
     year = {2007},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a2/}
}
TY  - JOUR
AU  - R. W. Carroll
TI  - Metric fluctuations, entropy, and the Wheeler–DeWitt equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 32
EP  - 44
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a2/
LA  - ru
ID  - TMF_2007_152_1_a2
ER  - 
%0 Journal Article
%A R. W. Carroll
%T Metric fluctuations, entropy, and the Wheeler–DeWitt equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 32-44
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a2/
%G ru
%F TMF_2007_152_1_a2
R. W. Carroll. Metric fluctuations, entropy, and the Wheeler–DeWitt equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a2/

[1] M. Hall, Gen. Relat. Grav., 37 (2005), 1505 ; gr-qc/0408098 | DOI | MR | Zbl

[2] M. Hall, K. Kumar, M. Reginatto, J. Phys. A, 36 (2003), 9779 | DOI | MR | Zbl

[3] M. Hall, Phys. Rev. A, 62 (2000), 012107 ; quant-ph/9912055 | DOI | MR

[4] M. Reginatto, Braz. J. Phys., 35 (2005), 476 ; gr-qc/0501030 | DOI

[5] L. Brenig, Quantum mechanics is a relativity theory, ; J. Phys. A, 40 (2007), 4567 ; Is quantum mechanics based on an invariance principle?, quant-ph/0608025gr-qc/0610142 | DOI | MR | Zbl

[6] R. Carroll, Fluctuations, Information, Gravity, and the Quantum Potential, Fund. Theories Phys., 148, Springer, Dordrecht, 2006 | MR | Zbl

[7] L. Olavo, Phys. A, 262 (1999), 197 ; 271 (1999), 260 ; Phys. Rev. E, 64 (2001), 036125 | DOI | MR | DOI | MR | DOI

[8] R. Parwani, Ann. Phys., 315 (2005), 419 ; ; J. Phys. A, 38 (2005), 6231 ; hep-th/0401190quant-ph/0408185 | DOI | MR | Zbl | DOI | MR | Zbl

[9] E. Santamato, Phys. Rev. D, 29 (1984), 216 ; 32 (1985), 2615 ; J. Math. Phys., 25 (1984), 2477 ; Phys. Lett. A, 130 (1988), 199 | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[10] E. Anderson, Gen. Relat. Grav., 36 (2004), 255 ; ; Phys. Rev. D, 68 (2003), 104001 ; ; Geometrodynamics: spacetime or space?, ; On the recovery of geometrodynamics from two different sets of first principles, gr-qc/0205118gr-qc/0302035gr-qc/0409123gr-qc/0511070 | DOI | MR | Zbl | DOI | MR

[11] B. S. DeWitt, Phys. Rev., 160 (1967), 1113 | DOI | Zbl

[12] D. Giulini, C. Kiefer, Class. Quantum Grav., 12 (1995), 403 ; ; S. Sawin, J. Math. Phys., 36 (1995), 6130 ; gr-qc/9409014gr-qc/9505040 | DOI | MR | DOI | MR | Zbl

[13] C. Kiefer, Quantum Gravity, Int. Ser. Monogr. Phys., 124, Clarendon Press, Oxford, 2004 | MR | Zbl

[14] E. Mottola, J. Math. Phys., 36 (1995), 2470 | DOI | MR | Zbl

[15] C. Rovelli, Quantum Gravity, Cambridge Univ. Press, Cambridge, 2004 ; A note on the foundation of relativistic mechanics. II. Covariant hamiltonian general relativity, gr-qc/0202079 | MR | Zbl

[16] J. Wheeler, “Superspace and quantum geometrodynamics”, Battelle Rencontres: 1967 Lectures in Mathematics and Physics, eds. C. M. DeWitt, J. A. Wheeler, Benjamin, New York, 1968, 242 | MR

[17] R. Carroll, Fluctuations, gravity, and the quantum potential, gr-qc/0501045

[18] R. Carroll, Remarks on the WDW equation, gr-qc/0512146 | MR

[19] A. O. Bolivar, Quantum-Classical Correspondence. Dynamical Quantization and the Classical Limit, Front. Coll., 8, Springer, Berlin, 2004 | DOI | MR | Zbl

[20] R. Carroll, Some fundamental aspects of a quantum potential, quant-ph/0506075

[21] R. Carroll, Found. Phys., 35 (2005), 131 | DOI | MR | Zbl

[22] C. Castro, J. Mahecha, Progr. Phys., 1 (2006), 38 | Zbl

[23] N. Pinto-Neto, Found. Phys., 35 (2005), 577 ; gr-qc/0410117 | DOI | MR | Zbl

[24] F. Shojai, M. Golshani, Int. J. Mod. Phys. A, 13 (1998), 677 ; 2135 | DOI | MR | Zbl | DOI | MR | Zbl

[25] K. Kuchař, J. Math. Phys., 15 (1974), 708 ; 17 (1976), 792 ; 18 (1977), 1589 ; 19 (1978), 390 ; 22 (1981), 2640 ; “Canonical methods of quantization”, Quantum Gravity II. A Second Oxford Symposium, eds. C. J. Isham, R. Penrose, D. W. Sciama, Clarendon Press, Oxford, 1981, 329 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | MR

[26] N. Pinto-Neto, E. Santini, Gen. Relat. Grav., 34 (2002), 505 ; ; Phys. Lett. A, 315 (2003), 36 ; ; Phys. Rev. D, 59 (1999), 123517 ; gr-qc/0009080gr-qc/0302112gr-qc/9811067 | DOI | MR | Zbl | DOI | Zbl | DOI | MR

[27] F. Shojai, A. Shojai, Understanding quantum theory in terms of geometry, ; Constraint algebra in causal loop quantum gravity, ; Class. Quantum Grav., 21 (2004), 1 gr-qc/0404102gr-qc/0409035 | DOI | MR | Zbl

[28] A. Shojai, F. Shojai, N. Dadhich, Int. J. Mod. Phys. A, 20 (2005), 2773 ; gr-qc/0504137 | DOI | MR | Zbl

[29] B. Frieden, Physics from Fisher Information, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[30] B. Hatfield, Quantum Field Theory of Point Particles and Strings, Frontiers in Phys., 75, Addison-Wesley, Redwood City, CA, 1992 | MR | Zbl

[31] H. Nikolić, Time in quantum gravity by weakening the Hamiltonian constraint, gr-qc/0312063

[32] P. Garbaczewski, Entropy, 7 (2005), 253 ; quant-ph/0408192 | DOI | MR | Zbl

[33] A. Fischer, J. Math. Phys., 27 (1986), 718 | DOI | MR | Zbl

[34] D. Giulini, Phys. Rev. D, 51 (1995), 5630 ; gr-qc/9311017 | DOI | MR

[35] C. Eling, R. Guedens, T. Jacobson, Phys. Rev. Lett., 96 (2006), 121301 ; gr-qc/0602001 | DOI | MR

[36] T. Jacobson, Phys. Rev. Lett., 75 (1995), 1260 ; gr-qc/9504004 | DOI | MR | Zbl

[37] T. Padmanabhan, Int. J. Mod. Phys. D, 13 (2004), 2293 ; ; Int. J. Mod. Phys. D, 14 (2005), 2263 ; ; Int. J. Mod. Phys. D, 15 (2006), 1659 ; ; AIP Conf. Proc., 861 (2006), 179 ; ; Braz. J. Phys., 35 (2005), 362 ; ; S. Wyithe, T. Padmanabhan, Properties of high redshift quasars-II: What does the quasar luminosity function tell us about super-massive black-hole evolution?, ; J. S. Bagla, T. Padmanabhan, Pramana, 49 (1997), 161 gr-qc/0408051gr-qc/0510015gr-qc/0606061astro-ph/0603114gr-qc/0412068astro-ph/0603333 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | DOI

[38] T. Banks, Nucl. Phys. B, 249 (1985), 332 | DOI | MR

[39] U. Gerlach, Phys. Rev., 177 (1969), 1929 | DOI

[40] H. Nikolić, Int. J. Mod. Phys. D, 12 (2003), 407 ; ; Phys. Lett. A, 348 (2006), 166 ; ; Eur. Phys. J. C, 47 (2006), 525 ; hep-th/0202204hep-th/0501046hep-th/0512186 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[41] J. Schwinger, Phys. Rev., 74 (1948), 1439 | DOI | MR | Zbl

[42] S. Tomonaga, Progr. Theoret. Phys., 1 (1946), 27 | DOI | MR | Zbl

[43] I. V. Kanatchikov, From the DeDonder–Weyl Hamiltonian formalism to quantization of gravity, ; Towards a “pre-canonical” quantization of gravity without the space+time decomposition, ; “Quantization of Gravity: Yet Another Way,”, Coherent States, Quantization and Gravity, eds. M. Schlichenmaier, A. Strasburger, S. T. Ali, A. Odzijewicz, Warsaw Univ. Press, Warsaw, 2001, 189 ; ; Nuclear Phys. B, 88 (2000), 326 ; ; Covariant geometric prequantization of fields, ; Int. J. Theoret. Phys., 40 (2001), 1121 ; ; Rep. Math. Phys., 46 (2000), 107 ; ; Phys. Lett. A, 283 (2001), 25 ; ; “On quantization of field theories in polymomentum variables”, Particles, Fields, and Gravitation (Lódz, Poland, 1998), AIP Conf. Proc., 453, ed. J. Rembielinski, Amer. Inst. Phys., Woodbury, NY, 1998, 356 ; ; Basic structures of the covariant canonical formalism for fields based on the De Donder–Weyl theory, gr-qc/9810076gr-qc/9909032gr-qc/9912094gr-qc/0004066gr-qc/0012038gr-qc/0012074hep-th/9911175hep-th/0012084hep-th/9811016hep-th/9410238 | MR | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[44] H. Nikolić, Eur. Phys. J. C, 42 (2005), 365 ; ; Found. Phys. Lett., 17 (2004), 363 ; ; Found. Phys. Lett., 18 (2005), 549 ; hep-th/0407228quant-ph/0208185quant-ph/0406173 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[45] H. Nikolić, Quantum determinism from quantum general covariance, hep-th/0601027 | MR

[46] M. Blagojević, Gravitation and Gauge Symmetries, Ser. High Energy Phys. Cosmol. Gravit., IOP Publ., Bristol, 2002 | MR | Zbl

[47] A. Ashtekar, Phys. Rev. Lett., 57 (1986), 2244 ; Phys. Rev. D, 36 (1987), 1587 | DOI | MR | DOI | MR

[48] J. Baez, Knots and quantum gravity: progress and prospects, ; Phys. Rev. D, 52 (1995), 6840 ; ; J. Baez, S. Sawin, J. Funct. Anal., 150 (1997), 1 ; gr-qc/9410018gr-qc/9501016q-alg/9507023 | DOI | MR | DOI | MR | Zbl

[49] C. H.-T. Wang, J. Phys. Conf. Ser., 33 (2006), 285 ; ; Phys. Rev. D, 71 (2005), 124026 ; ; Conformal decomposition in canonical general relativity, ; The conformal factor in the parameter-free construction of spin-gauge variables for gravity, ; Philos. Trans. R. Soc. Lond. A, 364 (2006), 3375 ; ; Phys. Rev. D, 72 (2005), 087501 gr-qc/0512023gr-qc/0501024gr-qc/0603062gr-qc/0603077gr-qc/0605124 | DOI | DOI | MR | DOI | Zbl | DOI | MR