Some thoughts on a nonlinear Schrödinger equation motivated by
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 157-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The arguments leading to a nonlinear generalization of the Schrödinger equation in the context of the maximum uncertainty principle are reviewed. The exact and perturbative properties of that equation depend on a free regulating/interpolating parameter $\eta$, which can be fixed using energetics as is shown here. A linear theory with an external potential that reproduces some unusual exact solutions of the nonlinear equation is also discussed, together with possible symmetry enhancements in the nonlinear theory.
Keywords: nonlinear Schrödinger equation, information theory, degeneration.
@article{TMF_2007_152_1_a11,
     author = {R. R. Parwani},
     title = {Some thoughts on a~nonlinear {Schr\"odinger} equation motivated by},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {157--162},
     year = {2007},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a11/}
}
TY  - JOUR
AU  - R. R. Parwani
TI  - Some thoughts on a nonlinear Schrödinger equation motivated by
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 157
EP  - 162
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a11/
LA  - ru
ID  - TMF_2007_152_1_a11
ER  - 
%0 Journal Article
%A R. R. Parwani
%T Some thoughts on a nonlinear Schrödinger equation motivated by
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 157-162
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a11/
%G ru
%F TMF_2007_152_1_a11
R. R. Parwani. Some thoughts on a nonlinear Schrödinger equation motivated by. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 157-162. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a11/

[1] E. T. Jaynes, Probability Theory. The Logic of Science, Cambridge Univ. Press, Cambridge, 2003 ; R. Balian, Stud. Hist. Philos. Sci. B. Stud. Hist. Philos. Modern Phys., 36 (2005), 323 | MR | Zbl | DOI | MR | Zbl

[2] T. M. Cover, J. A. Thomas, Elements of Information Theory, Wiley Ser. Telecom., Wiley, New York, 1991 | DOI | MR | Zbl

[3] M. Reginatto, Phys. Rev. A, 58 (1998), 1775 ; Erratum 60 (1999), 1730 ; B. R. Frieden, J. Modern Opt., 35 (1988), 1297 ; Amer. J. Phys., 57 (1989), 1004 | DOI | DOI | DOI | MR | Zbl | DOI | MR

[4] R. Parwani, J. Phys. A, 38 (2005), 6231 ; A physical axiomatic approach to Schrodinger's equation, quant-ph/0508125 | DOI | MR | Zbl

[5] R. Parwani, Ann. Physics, 315 (2005), 419 | DOI | MR | Zbl

[6] R. Parwani, G. Tabia, Universality in an information-theoretic motivated nonlinear Schrodinger equation, quant-ph/0607222 | MR

[7] G. Svetlichny, Informal resource letter – nonlinear quantum mechanics on arXiv up to august 2004, quant-ph/0410036 | MR

[8] R. Parwani, H. S. Tan, Exact solutions of a non-polynomially nonlinear Schrodinger equation, quant-ph/0605123 | MR