A hierarchy of integrable partial differential equations in $2{+}1$
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 147-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a hierarchy of integrable partial differential equations in $2+1$ dimensions arising from the commutation of one-parameter families of vector fields, and we construct the formal solution of the associated Cauchy problems using the inverse scattering method for one-parameter families of vector fields. Because the space of eigenfunctions is a ring, the inverse problem can be formulated in three distinct ways. In particular, one formulation corresponds to a linear integral equation for a Jost eigenfunction, and another formulation is a scalar nonlinear Riemann problem for suitable analytic eigenfunctions.
Keywords: integrable system, inverse scattering transform, family of vector fields, nonlinear Riemann problem.
Mots-clés : inverse spectral transformation
@article{TMF_2007_152_1_a10,
     author = {S. V. Manakov and P. M. Santini},
     title = {A~hierarchy of integrable partial differential equations in $2{+}1$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--156},
     year = {2007},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a10/}
}
TY  - JOUR
AU  - S. V. Manakov
AU  - P. M. Santini
TI  - A hierarchy of integrable partial differential equations in $2{+}1$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 147
EP  - 156
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a10/
LA  - ru
ID  - TMF_2007_152_1_a10
ER  - 
%0 Journal Article
%A S. V. Manakov
%A P. M. Santini
%T A hierarchy of integrable partial differential equations in $2{+}1$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 147-156
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a10/
%G ru
%F TMF_2007_152_1_a10
S. V. Manakov; P. M. Santini. A hierarchy of integrable partial differential equations in $2{+}1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 147-156. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a10/

[1] S. V. Manakov, P. M. Santini, Phys. Lett. A, 359 (2006), 613–619 ; nlin.SI/0604024 | DOI | MR | Zbl

[2] S. V. Manakov, P. V. Santini, Pisma v ZhETF, 83:10 (2006), 534–538 ; nlin.SI/0604023 | DOI

[3] M. V. Pavlov, J. Math. Phys., 44 (2003), 4134–4156 | DOI | MR | Zbl

[4] E. V. Ferapontov, K. R. Khusnutdinova, Commun. Math. Phys., 248 (2004), 187–206 | DOI | MR | Zbl

[5] M. Dunajski, J. Geom. Phys., 51 (2004), 126–137 | DOI | MR | Zbl

[6] V. E. Zakharov, Dispersionless limit of integrable systems in $2+1$ dimensions, Singular Limits of Dispersive Waves (Lyon, France, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 320, ed. N. M. Ercolani et al., Plenum, New York, 1994 | MR | Zbl

[7] I. M. Krichever, Commun. Pure Appl. Math., 47 (1994), 437–475 | DOI | MR | Zbl

[8] K. Takasaki, T. Takebe, Rev. Math. Phys., 7 (1995), 743–808 | DOI | MR | Zbl

[9] M. Dunajski, L. J. Mason, P. Tod, J. Geom. Phys., 37 (2001), 63–93 | DOI | MR | Zbl

[10] B. Konopelchenko, L. Martínez Alonso, O. Ragnisco, J. Phys. A, 34 (2001), 10209–10217 | DOI | MR | Zbl

[11] F. Guil, M. Mañas, L. Martínez Alonso, J. Phys. A, 36 (2003), 6457–6472 ; nlin.SI/0211020 | DOI | MR | Zbl

[12] J. F. Plebañski, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR

[13] B. Fuchssteiner, A. S. Fokas, Phys. D, 4 (1981), 47–66 | DOI | MR | Zbl

[14] F. Magri, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl

[15] P. M. Santini, P. M. Fokas, Commun. Math. Phys., 115 (1988), 375–419 | DOI | MR | Zbl

[16] S. R. Deans, The Radon Transform and Some of Its Applications, 2nd ed., Krieger Publ., Malabar, FL, 1993 | MR | Zbl

[17] S. V. Manakov, V. E. Zakharov, Lett. Math. Phys., 5 (1981), 247–253 | DOI | MR

[18] S. V. Manakov, Phys. D, 3 (1981), 420–427 | DOI | Zbl

[19] R. Courant, D. Hilbert, Methods of Mathematical Physics. Vol. II. Partial Differential Equations, Intersci. Publ., Wiley, New York–London, 1962 | MR | Zbl