Geometrization of quantum mechanics
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 20-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that various descriptions of quantum mechanics can be represented in
geometric terms. In particular, starting with the space of observables and
using the momentum map associated with the unitary group, we give a unified
geometric description of the different pictures of quantum mechanics. This
construction is an alternative to the usual GNS construction for pure states.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
quantum mechanics, Hermitian structure, Jordan algebra
Mots-clés : Poisson bracket, Lie–Jordan algebra.
                    
                  
                
                
                Mots-clés : Poisson bracket, Lie–Jordan algebra.
@article{TMF_2007_152_1_a1,
     author = {J. F. Carinena and J. Clemente-Gallardo and G. Marmo},
     title = {Geometrization of quantum mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a1/}
}
                      
                      
                    TY - JOUR AU - J. F. Carinena AU - J. Clemente-Gallardo AU - G. Marmo TI - Geometrization of quantum mechanics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2007 SP - 20 EP - 31 VL - 152 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a1/ LA - ru ID - TMF_2007_152_1_a1 ER -
J. F. Carinena; J. Clemente-Gallardo; G. Marmo. Geometrization of quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 152 (2007) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/TMF_2007_152_1_a1/
