Dynamics of semiclassical Bloch wave packets
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 424-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The semiclassical approximation for electron wave packets in crystals leads to equations that can be derived from a Lagrangian or, under suitable regularity conditions, in a Hamiltonian framework. We use the method of coadjoint orbits applied to the “enlarged” Galilei group to study these issues in the plane.
Keywords: wave packet, semiclassical dynamics, Berry phase, Hamiltonian mechanics.
@article{TMF_2007_151_3_a9,
     author = {P. A. Horv\'athy and L. Martina},
     title = {Dynamics of semiclassical {Bloch} wave packets},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {424--438},
     year = {2007},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a9/}
}
TY  - JOUR
AU  - P. A. Horváthy
AU  - L. Martina
TI  - Dynamics of semiclassical Bloch wave packets
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 424
EP  - 438
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a9/
LA  - ru
ID  - TMF_2007_151_3_a9
ER  - 
%0 Journal Article
%A P. A. Horváthy
%A L. Martina
%T Dynamics of semiclassical Bloch wave packets
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 424-438
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a9/
%G ru
%F TMF_2007_151_3_a9
P. A. Horváthy; L. Martina. Dynamics of semiclassical Bloch wave packets. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 424-438. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a9/

[1] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders, Philadelphia, 1976

[2] M.-C. Chang, Q. Niu, Phys. Rev. Lett., 75 (1995), 1348 ; Phys. Rev. B, 53 (1996), 7010 ; G. Sundaram, Q. Niu, Phys. Rev. B, 59 (1999), 14915 ; A. Bohm, A. Mostafazadeh, H. Koizumi et al., The Geometric Phase in Quantum Systems, Texts Monogr. Phys., Springer, Berlin, 2003 | DOI | DOI | DOI | MR | Zbl

[3] R. Karplus, J. M. Luttinger, Phys. Rev., 95 (1954), 1154 ; T. Jungwirth, Q. Niu, A. H. MacDonald, Phys. Rev. Lett., 90 (2002), 207208 ; D. Culcer, A. H. MacDonald, Q. Niu, Phys. Rev. B, 68 (2003), 045327 | DOI | Zbl | DOI | DOI

[4] Z. Fang, N. Nagaosa, K. S. Takahashi et al., Science, 302 (2003), 92 ; S. Onoda, N. Sugimoto, N. Nagaosa, Phys. Rev. Lett., 97 (2006), 126602 ; cond-mat/0605580 | DOI | MR | DOI

[5] P. Kramer, M. Saraceno, Geometry of the Time Dependent Variational Principle in Quantum Mechanics, Lect. Notes Phys., 140, eds. J. Ehelers et al., Springer, Berlin–Heidelberg–New York, 1981 | DOI | MR | Zbl

[6] J.-M. Lévy-Leblond, “Galilei group and Galilean invariance”, Group Theory and Applications, v. II, ed. E. M. Loebl, Academic Press, New York, 1971, 221 | DOI | MR

[7] J. Negro, M. A. del Olmo, J. Math. Phys., 31 (1990), 2811 ; J. Negro, M. A. del Olmo, J. Tosiek, J. Math. Phys., 47 (2006), 033508 | DOI | MR | Zbl | DOI | MR | Zbl

[8] P. A. Horváthy, L. Martina, P. Stichel, Phys. Lett. B, 615 (2005), 87 ; hep-th/0412090 | DOI | MR

[9] J. Lukierski, P. C. Stichel, W. J. Zakrzewski, Ann. Physics, 260 (1997), 224 ; hep-th/9612017 | DOI | MR | Zbl

[10] C. Duval, P. A. Horváthy, Phys. Lett. B, 479 (2000), 284 ; ; J. Phys. A, 34 (2001), 10097 ; hep-th/0002233hep-th/0106089 | DOI | MR | Zbl | DOI | MR | Zbl

[11] R. B. Laughlin, Phys. Rev. Lett., 50 (1983), 1395 | DOI

[12] A. Bérard, H. Mohrbach, Phys. Rev. D, 69 (2004), 127701 ; hep-th/0310167 | DOI | MR

[13] P. Horváthy, L. Martina, P. Stichel, Modern Phys. Lett. A, 20 (2005), 1177 | DOI | Zbl

[14] M. R. Douglas, N. A. Nekrasov, Rev. Modern Phys., 73 (2001), 977 ; R. J. Szabo, Phys. Rep., 378 (2003), 207 | DOI | MR | Zbl | DOI | MR | Zbl

[15] J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970 ; Structure of Dynamical Systems. A Symplectic View of Physics, Progr. Math., 149, Birkhäuser, Boston, 1997 | MR | Zbl | MR | Zbl

[16] R. Abraham, J. Marsden, Foundations of Mechanics, Benjamin, Reading, MA, 1978 ; G. Marmo, E. J. Saletan, A. Simoni, B. Vitale, Dynamical Systems. A Differential Geometric Approach to Symmetry and Reduction, Wiley-Intersci. Publ., Wiley, Chichester, 1985 | MR | Zbl | MR | Zbl

[17] L. D. Faddeev, R. Jackiw, Phys. Rev. Lett., 60 (1988), 1692 | DOI | MR | Zbl

[18] D. Thouless, M. Kohmoto, M. Nightingale, M. den Nijs, Phys. Rev. Lett., 49 (1982), 405 | DOI

[19] J. E. Avron, R. Seiler, B. Simon, Phys. Rev. Lett., 51 (1983), 51 | DOI

[20] P. A. Horváthy, M. S. Plyushchay, Nucl. Phys. B, 714 (2005), 269 ; hep-th/0502040 | DOI | MR | Zbl

[21] H. Bacry, Lett. Math. Phys., 1 (1976), 295 | DOI | MR

[22] C. Duval, P. A. Horváthy, Phys. Lett. B, 594 (2004), 402 ; ; B. S. Skagerstam, A. Stern, Phys. Scr., 24 (1981), 493 ; G. Grignani, M. Plyushchay, P. Sodano, Nucl. Phys. B, 464 (1996), 189 ; hep-th/0402191hep-th/9511072 | DOI | DOI | DOI | MR | Zbl