$N$-soliton train and generalized complex Toda chain for the Manakov system
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 391-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the dynamical behavior of the $N$-soliton train of the Manakov system and of the vector NLS equation in the adiabatic approximation. We prove that the dynamics of the $N$-soliton train in both cases are described by a generalized version of the complex Toda chain model. This fact can be used to predict the asymptotic regimes of the $N$-soliton train provided the initial soliton parameters are given.
Keywords: complex Toda chain, Manakov model, adiabatic dynamics
Mots-clés : vector soliton train.
@article{TMF_2007_151_3_a6,
     author = {V. S. Gerdjikov and E. V. Doktorov and N. P. Matsuka},
     title = {$N$-soliton train and generalized complex {Toda} chain for {the~Manakov} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--404},
     year = {2007},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a6/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - E. V. Doktorov
AU  - N. P. Matsuka
TI  - $N$-soliton train and generalized complex Toda chain for the Manakov system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 391
EP  - 404
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a6/
LA  - ru
ID  - TMF_2007_151_3_a6
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A E. V. Doktorov
%A N. P. Matsuka
%T $N$-soliton train and generalized complex Toda chain for the Manakov system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 391-404
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a6/
%G ru
%F TMF_2007_151_3_a6
V. S. Gerdjikov; E. V. Doktorov; N. P. Matsuka. $N$-soliton train and generalized complex Toda chain for the Manakov system. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 391-404. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a6/

[1] Yu. S. Kivshar, G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, San Diego, 2003

[2] C. Desem, P. L. Chu, “Soliton-soliton interactions”, Optical Solitons – Theory and Experiment, ed. J. R. Taylor, Cambridge Univ. Press, Cambridge, 1992, 127

[3] M. Suzuki, H. Toga, N. Edagawa, H. Tanaka, S. Yamamote, S. Akiba, Electron. Lett., 30 (1994), 1083 | DOI

[4] V. I. Karpman, V. V. Solov'ev, Phys. D, 3 (1981), 487 | DOI | MR | Zbl

[5] I. M. Uzunov, V. S. Gerdjikov, M. Gölles, F. Lederer, Opt. Commun., 125 (1996), 237 | DOI

[6] V. S. Gerdjikov, D. J. Kaup, I. M. Uzunov, E. G. Evstatiev, Phys. Rev. Lett., 77 (1996), 3943 ; V. S. Gerdjikov, I. M. Uzunov, E. G. Evstatiev, G. L. Diankov, Phys. Rev. E, 55 (1997), 6039 ; V. S. Gerdjikov, I. M. Uzunov, Phys. D, 152–153 (2001), 355 | DOI | DOI | MR | DOI | MR | Zbl

[7] V. S. Gerdjikov, E. V. Doktorov, J. Yang, Phys. Rev. E, 64 (2001), 056617 | DOI | MR

[8] V. S. Shchesnovich, Phys. Rev. E, 65 (2002), 046614 | DOI | MR | Zbl

[9] E. V. Doktorov, N. P. Matsuka, V. M. Rothos, Phys. Rev. E, 69 (2004), 056607 | DOI | MR

[10] J. M. Arnold, J. Opt. Soc. Amer. A, 15 (1998), 1450 ; Phys. Rev. E, 60 (1999), 979 | DOI | MR | DOI | MR

[11] S. V. Manakov, ZhETF, 38 (1974), 248

[12] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl | Zbl

[13] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Math. Soc. Lect. Notes Ser., 302, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[14] J. Yang, Phys. Rev. E, 65 (2002), 036606 | DOI

[15] M. Midrio, S. Wabnitz, P. Franco, Phys. Rev. E, 54 (1996), 5743 ; V. S. Shchesnovich, E. V. Doktorov, Phys. Rev. E, 55 (1997), 7626 ; T. I. Lakoba, D. J. Kaup, Phys. Rev. E, 56 (1997), 6147 ; S. M. Baker, J. N. Elgin, J. Gibbons, Phys. Rev. E, 62 (1999), 4325 | DOI | DOI | MR | DOI | MR | DOI | MR

[16] M. Toda, Theory of Nonlinear Lattices, Springer, Berlin, 1989 ; J. Moser, “Finitely many mass points on the line under the influence of an exponential potential — an integrable system”, Dynamical Systems, Theory and Applications (Rencontres, BattelleRes. Inst., Seattle, Wash., 1974), Lect. Notes Phys., 38, ed. J. Moser, Springer, Berlin, 1975, 467 ; Adv. Math., 16 (1975), 197 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[17] V. S. Gerdjikov, E. G. Evstatiev, R. I. Ivanov, J. Phys. A, 31 (1998), 8221 ; 33 (2000), 975 ; solv-int/9909020 | DOI | MR | Zbl | DOI | MR | Zbl

[18] D. J. Kaup, V. S. Gerdjikov, E. G. Evstatiev, G. L. Diankov, I. M. Uzunov, Criterion and regions of stability for quasi-equidistant soliton trains, Preprint INRNE-TH-97-4, Institute for Nuclear Research and Nuclear Energy, Sofia, 1997 ; ; V. S. Gerdjikov, E. G. Evstatiev, D. J. Kaup, G. L. Diankov, I. M. Uzunov, Phys. Lett. A, 241 (1998), 323 solv-int/9708004 | MR | DOI | Zbl

[19] D. Anderson, Phys. Rev. A, 27 (1983), 3135 ; D. Anderson, M. Lisak, T. Reichel, Phys. Rev. A, 38 (1988), 1618 ; B. A. Malomed, Progr. Opt., 43 (2002), 69 | DOI | DOI

[20] V. S. Gerdjikov, “$N$-soliton interactions, the complex Toda chain and stability of NLS soliton trains”, Proc. of the XVI-th Int. Symp. on Electromagnetic Theory, v. 1 (Aristotle Univ. of Thessaloniki, Greece, 1998), ed. E. Kriezis, 1998, 307