New solutions of the Schwarzian Korteweg–de Vries equation in $2{+}1$ dimensions based on weak symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 380-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the $(2+1)$-dimensional integrable Schwarzian Korteweg–de Vries equation. Using weak symmetries, we obtain a system of partial differential equations in $1+1$ dimensions. Further reductions lead to second-order ordinary differential equations that provide new solutions expressible in terms of known functions. These solutions depend on two arbitrary functions and one arbitrary solution of the Riemann wave equation and cannot be obtained by classical or nonclassical symmetries. Some of the obtained solutions of the Schwarzian Korteweg–de Vries equation exhibit a wide variety of qualitative behaviors; traveling waves and soliton solutions are among the most interesting.
Keywords: weak symmetry, partial differential equation, solitary wave.
@article{TMF_2007_151_3_a5,
     author = {M. L. Gandarias and M. S. Bruz\'on},
     title = {New solutions of {the~Schwarzian} {Korteweg{\textendash}de} {Vries} equation in $2{+}1$ dimensions based on weak symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {380--390},
     year = {2007},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a5/}
}
TY  - JOUR
AU  - M. L. Gandarias
AU  - M. S. Bruzón
TI  - New solutions of the Schwarzian Korteweg–de Vries equation in $2{+}1$ dimensions based on weak symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 380
EP  - 390
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a5/
LA  - ru
ID  - TMF_2007_151_3_a5
ER  - 
%0 Journal Article
%A M. L. Gandarias
%A M. S. Bruzón
%T New solutions of the Schwarzian Korteweg–de Vries equation in $2{+}1$ dimensions based on weak symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 380-390
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a5/
%G ru
%F TMF_2007_151_3_a5
M. L. Gandarias; M. S. Bruzón. New solutions of the Schwarzian Korteweg–de Vries equation in $2{+}1$ dimensions based on weak symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 380-390. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a5/

[1] E. Hille, Analytic Function Theory, v. II, Ginn, Boston–New York–Chicago, 1962 ; H. Schwerdtfeger, Geometry of Complex Numbers. Circle Geometry, Moebius Transformation, non-Euclidean Geometry, Dover, New York, 1979 | MR | Zbl | MR | Zbl

[2] I. M. Krichever, S. P. Novikov, UMN, 35:6 (1980), 47 | DOI | MR | Zbl

[3] J. Weiss, J. Math. Phys., 24 (1983), 1405 | DOI | MR | Zbl

[4] N. Kudryashov, P. Pickering, J. Phys. A, 31 (1998), 9505 | DOI | MR | Zbl

[5] K. Toda, S. Yu, J. Math. Phys., 41 (2000), 4747 | DOI | MR | Zbl

[6] J. Weiss, J. M. Tabor, G. Carnevale, J. Math. Phys., 24 (1983), 522 | DOI | MR | Zbl

[7] P. J. Olver, E. M. Vorob'ev, “Nonclassical and conditional symmetries”, CRC Handbook of Lie Group Analysis of Differential Equations, v. 3, ed. N. H. Ibragimov, CRC, Boca Raton, FL, 1996, 291 | MR | Zbl

[8] P. A. Clarkson, Chaos Solitons Fractals, 5 (1995), 2261 | DOI | MR | Zbl

[9] P. J. Olver, P. Rosenau, Phys. Lett. A, 144 (1986), 107 | DOI | MR | Zbl

[10] P. J. Olver, P. Rosenau, SIAM J. Appl. Math., 47 (1987), 263 | DOI | MR | Zbl

[11] E. M. Vorob'ev, J. Nonlinear Math. Phys., 3 (1996), 330 | DOI | MR | Zbl

[12] A. V. Dzhamay, E. M. Vorob'ev, J. Phys. A, 27 (1994), 5541 | DOI | MR | Zbl

[13] G. Saccomandi, Note Mat., 23:2 (2004), 217 | MR

[14] G. Cicogna, Note Mat., 23:2 (2005), 15 | MR

[15] J. Ramirez, M. S. Bruzon, C. Muriel, M. L. Gandarias, J. Phys. A, 36 (2003), 1467 | DOI | MR | Zbl

[16] J. Ramírez, J. L. Romero, M. S. Bruzón, M. L. Gandarias, Chaos Solitons Fractals, 32 (2007), 682 | DOI | MR | Zbl

[17] G. W. Bluman, J. D. Cole, J. Math. Mech., 18 (1969), 1025 | MR | Zbl

[18] B. Champagne, W. Hereman, P. Winternitz, Comput. Phys. Comm., 66 (1991), 319 | DOI | MR | Zbl