@article{TMF_2007_151_3_a5,
author = {M. L. Gandarias and M. S. Bruz\'on},
title = {New solutions of {the~Schwarzian} {Korteweg{\textendash}de} {Vries} equation in $2{+}1$ dimensions based on weak symmetries},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {380--390},
year = {2007},
volume = {151},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a5/}
}
TY - JOUR
AU - M. L. Gandarias
AU - M. S. Bruzón
TI - New solutions of the Schwarzian Korteweg–de Vries equation in $2{+}1$ dimensions based on weak symmetries
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2007
SP - 380
EP - 390
VL - 151
IS - 3
UR - http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a5/
LA - ru
ID - TMF_2007_151_3_a5
ER -
%0 Journal Article
%A M. L. Gandarias
%A M. S. Bruzón
%T New solutions of the Schwarzian Korteweg–de Vries equation in $2{+}1$ dimensions based on weak symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 380-390
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a5/
%G ru
%F TMF_2007_151_3_a5
M. L. Gandarias; M. S. Bruzón. New solutions of the Schwarzian Korteweg–de Vries equation in $2{+}1$ dimensions based on weak symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 380-390. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a5/
[1] E. Hille, Analytic Function Theory, v. II, Ginn, Boston–New York–Chicago, 1962 ; H. Schwerdtfeger, Geometry of Complex Numbers. Circle Geometry, Moebius Transformation, non-Euclidean Geometry, Dover, New York, 1979 | MR | Zbl | MR | Zbl
[2] I. M. Krichever, S. P. Novikov, UMN, 35:6 (1980), 47 | DOI | MR | Zbl
[3] J. Weiss, J. Math. Phys., 24 (1983), 1405 | DOI | MR | Zbl
[4] N. Kudryashov, P. Pickering, J. Phys. A, 31 (1998), 9505 | DOI | MR | Zbl
[5] K. Toda, S. Yu, J. Math. Phys., 41 (2000), 4747 | DOI | MR | Zbl
[6] J. Weiss, J. M. Tabor, G. Carnevale, J. Math. Phys., 24 (1983), 522 | DOI | MR | Zbl
[7] P. J. Olver, E. M. Vorob'ev, “Nonclassical and conditional symmetries”, CRC Handbook of Lie Group Analysis of Differential Equations, v. 3, ed. N. H. Ibragimov, CRC, Boca Raton, FL, 1996, 291 | MR | Zbl
[8] P. A. Clarkson, Chaos Solitons Fractals, 5 (1995), 2261 | DOI | MR | Zbl
[9] P. J. Olver, P. Rosenau, Phys. Lett. A, 144 (1986), 107 | DOI | MR | Zbl
[10] P. J. Olver, P. Rosenau, SIAM J. Appl. Math., 47 (1987), 263 | DOI | MR | Zbl
[11] E. M. Vorob'ev, J. Nonlinear Math. Phys., 3 (1996), 330 | DOI | MR | Zbl
[12] A. V. Dzhamay, E. M. Vorob'ev, J. Phys. A, 27 (1994), 5541 | DOI | MR | Zbl
[13] G. Saccomandi, Note Mat., 23:2 (2004), 217 | MR
[14] G. Cicogna, Note Mat., 23:2 (2005), 15 | MR
[15] J. Ramirez, M. S. Bruzon, C. Muriel, M. L. Gandarias, J. Phys. A, 36 (2003), 1467 | DOI | MR | Zbl
[16] J. Ramírez, J. L. Romero, M. S. Bruzón, M. L. Gandarias, Chaos Solitons Fractals, 32 (2007), 682 | DOI | MR | Zbl
[17] G. W. Bluman, J. D. Cole, J. Math. Mech., 18 (1969), 1025 | MR | Zbl
[18] B. Champagne, W. Hereman, P. Winternitz, Comput. Phys. Comm., 66 (1991), 319 | DOI | MR | Zbl