Complex projections of completely positive quaternionic maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 360-370 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the complex projection of a completely positive quaternionic map of quaternionic density matrices is a positive map in the space of complex density matrices, and we briefly outline some of its properties. To illustrate this result, we study the complex projection of a one-parameter quaternionic unitary dynamics of a spin-$1/2$ quantum system.
Keywords: open quantum system, positive map
Mots-clés : quaternion.
@article{TMF_2007_151_3_a3,
     author = {M. Asorey and G. Scolarici and L. Solombrino},
     title = {Complex projections of completely positive quaternionic maps},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {360--370},
     year = {2007},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a3/}
}
TY  - JOUR
AU  - M. Asorey
AU  - G. Scolarici
AU  - L. Solombrino
TI  - Complex projections of completely positive quaternionic maps
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 360
EP  - 370
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a3/
LA  - ru
ID  - TMF_2007_151_3_a3
ER  - 
%0 Journal Article
%A M. Asorey
%A G. Scolarici
%A L. Solombrino
%T Complex projections of completely positive quaternionic maps
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 360-370
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a3/
%G ru
%F TMF_2007_151_3_a3
M. Asorey; G. Scolarici; L. Solombrino. Complex projections of completely positive quaternionic maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 360-370. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a3/

[1] S. Weinberg, Phys. Rev. Lett., 62 (1989), 485 | DOI

[2] M. Asorey, A. Kossakowski, G. Marmo, E. C. G. Sudarshan, Open Syst. Inf. Dyn., 12 (2005), 319 | DOI | MR | Zbl

[3] V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, F. Zaccaria, Phys. Lett. A, 327 (2004), 353 | DOI | MR | Zbl

[4] A. Kossakowski, Rep. Math. Phys., 46 (2000), 393 | DOI | MR | Zbl

[5] G. Scolarici, L. Solombrino, “Complex entanglement and quaternionic separability”, The Foundations of Quantum Mechanics. Historical Analysis and Open Questions (Cesena, Italy, 2004), eds. C. Garola, A. Rossi, S. Sozzo, World Sci., Singapore, 2006, 301 | Zbl

[6] M. Asorey, G. Scolarici, J. Phys. A, 39 (2006), 9727 | DOI | MR | Zbl

[7] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Internat. Ser. Monogr. Phys., 88, Oxford Univ. Press, New York, 1995 | MR | Zbl

[8] D. Finkelstein, J. M. Jauch, S. Sciminovich, D. Speiser, J. Math. Phys., 4 (1963), 788 | DOI | MR | Zbl

[9] K. Kraus, States, Effects and Operations. Fundamental Notions of Quantum Theory, Lect. Notes Phys., 190, eds. A. Böhm, J. D. Dollard, W. H. Wootters, Springer, Berlin, 1983 | DOI | MR | Zbl

[10] W. F. Stinespring, Proc. Amer. Math. Soc., 6 (1955), 211 | DOI | MR | Zbl

[11] R. A. Horn, C. R. Johnson, Matrix Analysis, v. 1, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl

[12] F. Zhang, Linear Algebra Appl., 251 (1997), 21 | DOI | MR | Zbl

[13] A. Kossakowski, Rep. Math. Phys., 43 (1972), 247 | DOI | MR

[14] V. Gorini, A. Kossakowski, E. C. G. Sudarshan, J. Math. Phys., 17 (1976), 821 | DOI | MR

[15] G. Lindblad, Comm. Math. Phys., 48 (1976), 119 | DOI | MR | Zbl

[16] S. De Leo, G. Scolarici, L. Solombrino, J. Math. Phys., 43 (2002), 5815 | DOI | MR | Zbl