@article{TMF_2007_151_3_a16,
author = {V. Rosenhaus},
title = {An~infinite set of conservation laws for infinite symmetries},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {518--528},
year = {2007},
volume = {151},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a16/}
}
V. Rosenhaus. An infinite set of conservation laws for infinite symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 518-528. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a16/
[1] E. Neter, “Invariantnye variatsionnye zadachi”, Variatsionnye printsipy mekhaniki, Fizmatlit, M., 1959, 604–630 | MR | Zbl
[2] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl | Zbl
[3] J. Hanc, S. Tuleja, M. Hancova, Amer. J. Phys., 72 (2004), 428–435 | DOI | MR | Zbl
[4] N. H. Ibragimov, T. Kolsrud, Nonlinear Dynam., 36 (2004), 29–40 | DOI | MR | Zbl
[5] A. H. Kara, F. M. Mahomed, J. Nonlinear Math. Phys., 9 (2002), 60–72 | DOI | MR
[6] S. C. Anco, G. Bluman, European J. Appl. Math., 13 (2002), 545–566 ; 567–585 | DOI | MR | Zbl | DOI | MR | Zbl
[7] T. Wolf, European. J. Appl. Math., 13 (2002), 129–152 | DOI | MR | Zbl
[8] A. H. Kara, F. M. Mahomed, Internat. J. Theoret. Phys., 39 (2000), 23–40 | DOI | MR | Zbl
[9] I. M. Anderson, J. Pohjanpelto, Math. Proc. Cambridge Philos. Soc., 120 (1996), 369–384 | DOI | MR | Zbl
[10] A. G. Meshkov, Izv. vuzov. Ser. fiz., 38 (1995), 9–14 | DOI | MR | Zbl
[11] V. Rosenhaus, G. H. Katzin, J. Math. Phys., 35 (1994), 1998–2012 | DOI | MR | Zbl
[12] A. M. Vinogradov (ed.), Symmetries of partial differential equations. Conservation Laws–Applications–Algorithms, Part I, II, III., Springer, Dordrecht, 1989 | MR | MR | MR | Zbl | Zbl | Zbl
[13] A. M. Vinogradov, Acta Appl. Math., 2 (1984), 21–78 | DOI | MR | Zbl
[14] R. Jackiw, N. S. Manton, Ann. Phys., 127 (1980), 257–273 | DOI | MR
[15] N. H. Ibragimov (ed.), Lie Group Analysis of Differential Equations, vols. 1–3, CRC, Boca Raton, FL, 1994 ; 1995 ; 1996 | MR | Zbl | MR | Zbl | MR | Zbl
[16] V. Rosenhaus, J. Math. Phys., 43 (2002), 6129–6150 | DOI | MR | Zbl
[17] V. Rosenhaus, J. Dyn. Sys. Geom. Theor., 1 (2002), 95–107 | MR | Zbl
[18] V. Rosenhaus, “On infinite symmetries and essential conservation laws for Navier–Stokes equations”, GROUP 24. Physical and Mathematical Aspects of Symmetries, Proc. XXIV Intern. Colloq. Group Theor. Methods in Physics (Paris, 2002), IOP Conf. Ser., 173, eds. J.-P. Gazeau et al., IOP Publ., Bristol, 2003, 737–740
[19] V. Rosenhaus, Rep. Math. Phys., 51 (2003), 71–86 | DOI | MR | Zbl
[20] V. Rozenkhaus, TMF, 144 (2005), 190–198 | DOI | MR
[21] V. V. Zharinov, “Low-dimensional conservation laws of PDE”, Izbrannye voprosy matematicheskoi fiziki i analiza, Tr. MIAN, 203, 1994, 478–493 | MR | Zbl
[22] J. Rosen, Some Properties of the Euler–Lagrange Operators, Preprint TAUP-269-72, Tel Aviv Univ., Tel Aviv, 1972
[23] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | Zbl
[24] M. Koiv, V. Rosenhaus, Algebras Groups Geom., 3 (1986), 167–198 | MR | Zbl
[25] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. Vyp. 6. Gidrodinamika, Nauka, Fizmatlit, M., 1986 | MR | MR | Zbl
[26] K. Kiiranen, V. Rosenhaus, J. Phys. A, 21 (1988), L681–L684 | DOI | MR | Zbl