An infinite set of conservation laws for infinite symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 518-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider partial differential equations of a variational problem admitting infinite-dimensional Lie symmetry algebras parameterized by arbitrary functions of dependent variables and their derivatives. We show that unlike differential systems with symmetry algebras parameterized by arbitrary functions of independent variables, these equations have infinite sets of essential conservation laws.
Keywords: infinite symmetries, conservation law.
@article{TMF_2007_151_3_a16,
     author = {V. Rosenhaus},
     title = {An~infinite set of conservation laws for infinite symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {518--528},
     year = {2007},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a16/}
}
TY  - JOUR
AU  - V. Rosenhaus
TI  - An infinite set of conservation laws for infinite symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 518
EP  - 528
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a16/
LA  - ru
ID  - TMF_2007_151_3_a16
ER  - 
%0 Journal Article
%A V. Rosenhaus
%T An infinite set of conservation laws for infinite symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 518-528
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a16/
%G ru
%F TMF_2007_151_3_a16
V. Rosenhaus. An infinite set of conservation laws for infinite symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 518-528. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a16/

[1] E. Neter, “Invariantnye variatsionnye zadachi”, Variatsionnye printsipy mekhaniki, Fizmatlit, M., 1959, 604–630 | MR | Zbl

[2] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl | Zbl

[3] J. Hanc, S. Tuleja, M. Hancova, Amer. J. Phys., 72 (2004), 428–435 | DOI | MR | Zbl

[4] N. H. Ibragimov, T. Kolsrud, Nonlinear Dynam., 36 (2004), 29–40 | DOI | MR | Zbl

[5] A. H. Kara, F. M. Mahomed, J. Nonlinear Math. Phys., 9 (2002), 60–72 | DOI | MR

[6] S. C. Anco, G. Bluman, European J. Appl. Math., 13 (2002), 545–566 ; 567–585 | DOI | MR | Zbl | DOI | MR | Zbl

[7] T. Wolf, European. J. Appl. Math., 13 (2002), 129–152 | DOI | MR | Zbl

[8] A. H. Kara, F. M. Mahomed, Internat. J. Theoret. Phys., 39 (2000), 23–40 | DOI | MR | Zbl

[9] I. M. Anderson, J. Pohjanpelto, Math. Proc. Cambridge Philos. Soc., 120 (1996), 369–384 | DOI | MR | Zbl

[10] A. G. Meshkov, Izv. vuzov. Ser. fiz., 38 (1995), 9–14 | DOI | MR | Zbl

[11] V. Rosenhaus, G. H. Katzin, J. Math. Phys., 35 (1994), 1998–2012 | DOI | MR | Zbl

[12] A. M. Vinogradov (ed.), Symmetries of partial differential equations. Conservation Laws–Applications–Algorithms, Part I, II, III., Springer, Dordrecht, 1989 | MR | MR | MR | Zbl | Zbl | Zbl

[13] A. M. Vinogradov, Acta Appl. Math., 2 (1984), 21–78 | DOI | MR | Zbl

[14] R. Jackiw, N. S. Manton, Ann. Phys., 127 (1980), 257–273 | DOI | MR

[15] N. H. Ibragimov (ed.), Lie Group Analysis of Differential Equations, vols. 1–3, CRC, Boca Raton, FL, 1994 ; 1995 ; 1996 | MR | Zbl | MR | Zbl | MR | Zbl

[16] V. Rosenhaus, J. Math. Phys., 43 (2002), 6129–6150 | DOI | MR | Zbl

[17] V. Rosenhaus, J. Dyn. Sys. Geom. Theor., 1 (2002), 95–107 | MR | Zbl

[18] V. Rosenhaus, “On infinite symmetries and essential conservation laws for Navier–Stokes equations”, GROUP 24. Physical and Mathematical Aspects of Symmetries, Proc. XXIV Intern. Colloq. Group Theor. Methods in Physics (Paris, 2002), IOP Conf. Ser., 173, eds. J.-P. Gazeau et al., IOP Publ., Bristol, 2003, 737–740

[19] V. Rosenhaus, Rep. Math. Phys., 51 (2003), 71–86 | DOI | MR | Zbl

[20] V. Rozenkhaus, TMF, 144 (2005), 190–198 | DOI | MR

[21] V. V. Zharinov, “Low-dimensional conservation laws of PDE”, Izbrannye voprosy matematicheskoi fiziki i analiza, Tr. MIAN, 203, 1994, 478–493 | MR | Zbl

[22] J. Rosen, Some Properties of the Euler–Lagrange Operators, Preprint TAUP-269-72, Tel Aviv Univ., Tel Aviv, 1972

[23] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | Zbl

[24] M. Koiv, V. Rosenhaus, Algebras Groups Geom., 3 (1986), 167–198 | MR | Zbl

[25] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. Vyp. 6. Gidrodinamika, Nauka, Fizmatlit, M., 1986 | MR | MR | Zbl

[26] K. Kiiranen, V. Rosenhaus, J. Phys. A, 21 (1988), L681–L684 | DOI | MR | Zbl