Decomposition of variables and duality in non-Abelian models
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 510-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider inhomogeneous current states in low-dimensional systems characterized by spatial separation of phase states with ordered spin and charge degrees of freedom. We show that near the self-duality point in the Ginzburg–Landau spinor model, the inhomogeneity degree of non-Abelian states is higher than that of states with an Abelian distribution of degrees of freedom.
Keywords: strongly correlated system, low-dimensional electron system, inhomogeneous current state, Ginzburg–Landau model, Hopf invariant.
@article{TMF_2007_151_3_a15,
     author = {A. P. Protogenov and V. A. Verbus},
     title = {Decomposition of variables and duality in {non-Abelian} models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {510--517},
     year = {2007},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a15/}
}
TY  - JOUR
AU  - A. P. Protogenov
AU  - V. A. Verbus
TI  - Decomposition of variables and duality in non-Abelian models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 510
EP  - 517
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a15/
LA  - ru
ID  - TMF_2007_151_3_a15
ER  - 
%0 Journal Article
%A A. P. Protogenov
%A V. A. Verbus
%T Decomposition of variables and duality in non-Abelian models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 510-517
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a15/
%G ru
%F TMF_2007_151_3_a15
A. P. Protogenov; V. A. Verbus. Decomposition of variables and duality in non-Abelian models. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 510-517. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a15/

[1] P. A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys., 78 (2006), 17 | DOI

[2] E. Babaev, L. D. Faddeev, A. J. Niemi, Phys. Rev. B, 65 (2002), 100512 | DOI

[3] A. F. Vakulenko, L. V. Kapitanskii, DAN, 246 (1979), 840 ; A. Kundu, Yu. P. Rybakov, J. Phys. A, 15 (1982), 269 | MR | Zbl | DOI | MR

[4] R. S. Ward, Nonlinearity, 12 (1999), 241 | DOI | MR | Zbl

[5] A. P. Protogenov, V. A. Verbus, Pisma v ZhETF, 76 (2002), 60

[6] A. P. Protogenov, V. A. Verbus, TMF, 144 (2005), 182 | DOI | MR | Zbl

[7] L. B. Ioffe, P. B. Wiegmann, Phys. Rev. Lett., 65 (1990), 653 | DOI

[8] L. D. Faddeev, A. J. Niemi, Phys. Lett. B, 525 (2002), 195 ; Т. А. Болохов, Л. Д. Фаддеев, ТМФ, 139 (2004), 276 | DOI | MR | Zbl | DOI | MR | Zbl

[9] R. F. Picken, J. Math. Phys., 31 (1990), 616 | DOI | MR | Zbl

[10] L. D. Faddeev, Philos. T. Roy. Soc. London A, 359 (2001), 1399 | DOI | MR | Zbl

[11] D. Karabali, V. P. Nair, S. Randjbar-Daemi, “Fuzzy spaces, the M(atrix) model and the quantum Hall effect”, From Fields to Strings, Circumnavigating Theoretical Physics, v. 1, eds. M. Shifman, A. Vainshtein, J. Wheater, World Scientific, Singapore, 2005, 831 ; hep-th/0407007 | MR | Zbl

[12] K.-I. Kondo, Y. Taira, Progr. Theor. Phys., 104 (2000), 1189 | DOI | MR

[13] R. F. Picken, J. Math. Phys., 31 (1990), 616 | DOI | MR | Zbl

[14] M. Atiyah, E. Witten, Adv. Theor. Math. Phys., 6 (2002), 1 ; hep-th/0107177 | DOI | MR | Zbl

[15] A. Ranicki, High-dimensional Knot Theory. Algebraic Surgery in Codimension 2, Springer Monogr. Math., Springer, New York, 1998 | DOI | MR | Zbl