Yang–Baxter algebra and generation of quantum integrable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 470-485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discover an operator-deformed quantum algebra using the quantum Yang–Baxter equation with the trigonometric $R$-matrix. This novel Hopf algebra together with its $q\to 1$ limit seems the most general Yang–Baxter algebra underlying quantum integrable systems. We identify three different directions for applying this algebra in integrable systems depending on different sets of values of the deforming operators. Fixed values on the whole lattice yield subalgebras linked to standard quantum integrable models, and the associated Lax operators generate and classify them in a unified way. Variable values yield a new series of quantum integrable inhomogeneous models. Fixed but different values at different lattice sites can produce a novel class of integrable hybrid models including integrable matter–radiation models and quantum field models with defects, in particular, a new quantum integrable sine-Gordon model with defect.
Keywords: operator-deformed quantum algebra, unifying scheme for quantum integrable systems, inhomogeneous model, matter–radiation interaction model, sine-Gordon model with defect.
@article{TMF_2007_151_3_a12,
     author = {A. Kundu},
     title = {Yang{\textendash}Baxter algebra and generation of quantum integrable models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {470--485},
     year = {2007},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a12/}
}
TY  - JOUR
AU  - A. Kundu
TI  - Yang–Baxter algebra and generation of quantum integrable models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 470
EP  - 485
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a12/
LA  - ru
ID  - TMF_2007_151_3_a12
ER  - 
%0 Journal Article
%A A. Kundu
%T Yang–Baxter algebra and generation of quantum integrable models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 470-485
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a12/
%G ru
%F TMF_2007_151_3_a12
A. Kundu. Yang–Baxter algebra and generation of quantum integrable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 470-485. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a12/

[1] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories, Proc. Symp. (Tvärminne, Finland, 1981), Lecture Notes in Phys., 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin–New York, 1982, 61 | DOI | MR | Zbl

[2] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Algebra i analiz, 1 (1989), 178 | MR | Zbl

[3] L. D. Faddeev, Internat. J. Modern Phys. A, 10 (1995), 1845 | DOI | MR | Zbl

[4] A. Kundu, B. Basu Mallick, Modern Phys. Lett. A, 7 (1992), 61 ; A. Kundu, Phys. Rev. Lett., 82 (1999), 3936 ; “Unifying approaches in integrable systems: quantum and statistical, ultralocal and non-ultralocal”, Classical and Quantum Integrable Systems: Theory and Applications, ed. A. Kundu, IOP, Bristol, 2003, 147 | DOI | MR | Zbl | DOI | MR | Zbl

[5] A. G. Izergin, V. E. Korepin, Nucl. Phys. B, 205 (1982), 401 | DOI | MR

[6] V. K. Dobrev, J. Math. Phys., 33 (1992), 3419 | DOI | MR | Zbl

[7] A. Kundu, SIGMA, 3 (2007), Paper 040, 14 pp. | DOI | MR | Zbl

[8] A. Kundu, B. Basu Mallick, J. Math. Phys., 34 (1993), 1052 | DOI | MR | Zbl

[9] A. G. Shnirman, B. A. Malomed, E. Ben-Jacob, Phys. Rev. A, 50 (1994), 3453 | DOI

[10] L. D. Faddeev, O. Tirkkonen, Nucl. Phys. B, 453 (1995), 647 | DOI | MR | Zbl

[11] A. Kundu, Phys. Lett. A, 190 (1994), 79 | DOI | MR | Zbl

[12] R. Inoue, K. Hikami, J. Phys. Soc. Japan, 67 (1998), 87 | DOI | MR | Zbl

[13] A. Kundu, O. Ragnisco, J. Phys. A, 27 (1994), 6335 | DOI | MR | Zbl

[14] V. O. Tarasov, TMF, 63 (1985), 175 ; A. G. Izergin, V. E. Korepin, Lett. Math. Phys., 8 (1984), 259 | DOI | MR | DOI | MR

[15] A. Kundu, Phys. Lett. B, 633 (2006), 657 | DOI | MR | Zbl

[16] A. Kundu, J. Phys. A, 37 (2004), L281 | DOI | MR | Zbl

[17] E. Corrigan, C. Zambon, J. Phys. A, Math. Gen., 37 (2004), L471 ; ; P. Bowcock, E. Corrigan, C. Zambon, JHEP, 08 (2005), 023 ; hep-th/0407199hep-th/0506169 | DOI | MR | Zbl | DOI | MR

[18] I. Khabibullin, A. Kundu, “Quantum and classical integrable sine-Gordon model with defect” (to appear)

[19] B. Buck, C. V. Sukumar, Phys. Lett. A, 81 (1981), 132 | DOI

[20] E. T. Jaynes, F. W. Cummings, Proc. IEEE, 51 (1963), 89 | DOI

[21] C. A. Blockley, D. F. Walls, H. Risken, Europhys. Lett., 17 (1992), 509 | DOI | MR

[22] M. Chaichian, D. Ellinas, P. Kulish, Phys. Rev. Lett., 65 (1990), 980 | DOI | MR | Zbl

[23] I. T. Khabibullin, TMF, 114 (1998), 115 | DOI | MR | Zbl

[24] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40 (1979), 194 | DOI | MR