Dispersionless integrable equations as coisotropic deformations: Extensions and reductions
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 439-457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain associative algebras and other algebraic structures. We show that with this approach, the dispersionless Hirota equations for the dKP hierarchy are just the associativity conditions in a certain parameterization. We consider several generalizations and demonstrate that B-type dispersionless integrable hierarchies, such as the dBKP and the dVN hierarchies, are coisotropic deformations of the Jordan triple systems. We show that stationary reductions of the dispersionless integrable equations are connected with dynamical systems on the plane that are completely integrable on a fixed energy level.
Keywords: associative algebra, integrable equation.
Mots-clés : coisotropic deformation
@article{TMF_2007_151_3_a10,
     author = {B. G. Konopelchenko and F. Magri},
     title = {Dispersionless integrable equations as coisotropic deformations: {Extensions} and reductions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {439--457},
     year = {2007},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a10/}
}
TY  - JOUR
AU  - B. G. Konopelchenko
AU  - F. Magri
TI  - Dispersionless integrable equations as coisotropic deformations: Extensions and reductions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 439
EP  - 457
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a10/
LA  - ru
ID  - TMF_2007_151_3_a10
ER  - 
%0 Journal Article
%A B. G. Konopelchenko
%A F. Magri
%T Dispersionless integrable equations as coisotropic deformations: Extensions and reductions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 439-457
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a10/
%G ru
%F TMF_2007_151_3_a10
B. G. Konopelchenko; F. Magri. Dispersionless integrable equations as coisotropic deformations: Extensions and reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 3, pp. 439-457. http://geodesic.mathdoc.fr/item/TMF_2007_151_3_a10/

[1] V. E. Zakharov, Funkts. analiz i ego prilozh., 14:2 (1980), 15–24 ; Y. Kodama, Phys. Lett. A, 129 (1988), 223–226 ; Б. А. Дубровин, С. П. Новиков, УМН, 44:6 (1989), 29–98 ; B. A. Kuperschmidt, J. Phys. A, 23 (1990), 871–886 ; R. Carroll, Y. Kodama, J. Phys. A, 28 (1995), 6373–6387 ; J. Gibbons, S. P. Tsarev, Phys. Lett. A, 211 (1996), 19–24 ; P. B. Wiegmann, A. Zabrodin, Commun. Math. Phys., 213 (2000), 523–538 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[2] I. M. Krichever, Funkts. analiz i ego prilozh., 22:3 (1988), 37–52 | MR | Zbl

[3] Y. Kodama, Phys. Lett. A, 147 (1990), 477–482 | DOI | MR

[4] K. Takasaki, T. Takebe, Internat. J. Modern Phys. A, 7 (1992), 889–922 | DOI | MR | Zbl

[5] K. Takasaki, T. Takebe, Rev. Math. Phys., 7 (1995), 743–808 | DOI | MR | Zbl

[6] I. M. Krichever, Commun. Pure Appl. Math., 47 (1994), 437–475 | DOI | MR | Zbl

[7] V. E. Zakharov, “Dispersionless limit of integrable systems in $2+1$ dimensions”, Singular Limits of Dispersive Waves, Proc. NATO Adv. Res. Workshop (Lyon, France, 1991), NATO Adv. Sci. Inst. Ser. B, Phys., 320, eds. N. M. Ercolani et al., Plenum, New York, 1994, 165–174 | MR | Zbl

[8] A. Boyarsky, A. Marshakov, O. Ruchayskiy, P. B. Wiegmann, A. Zabrodin, Phys. Lett., 515 (2001), 483–492 | DOI | MR | Zbl

[9] B. G. Konopelchenko, L. Martinez Alonso, J. Math. Phys., 43 (2003), 3807–3823 | DOI | MR

[10] B. G. Konopelchenko, L. Martínez Alonso, Stud. Appl. Math., 109 (2002), 313–336 | DOI | MR | Zbl

[11] B. G. Konopelchenko, F. Magri, Coisotropic deformations of associative algebras and dispersionless integrable hierarchies, nlin.SI/0606069 | MR

[12] A. Weinstein, J. Math. Soc. Japan, 40 (1988), 705–727 ; R. Berndt, An Introduction to Symplectic Geometry, Grad. Stud. Math., 26, AMS, Providence, RI, 2001 | DOI | MR | Zbl | MR | Zbl

[13] G. Falqui, F. Magri, M. Pedroni, Commun. Math. Phys., 197 (1998), 303–324 | DOI | MR | Zbl

[14] E. Witten, Nuclear Phys. B, 340 (1990), 281–332 ; R. Dijkgraaf, H. Verlinde, E. Verlinde, Nuclear Phys. B, 352 (1991), 59–86 | DOI | MR | DOI | MR

[15] L. C. Li, Commun. Math. Phys., 203 (1999), 573–592 | DOI | MR | Zbl

[16] M. Błaszak, Phys. Lett. A, 297 (2002), 191–195 | DOI | MR | Zbl

[17] N. Jacobson, Structure and Representation of Jordan Algebras, Colloq. Publ., 39, AMS, Providence, RI, 1968 ; E. Neher, Jordan Triple Systems by the Grid Approach, Lect. Notes Math., 1280, Springer, Berlin, 1987 | MR | Zbl | DOI | MR | Zbl

[18] K. Takasaki, Lett. Math. Phys., 28 (1993), 177–185 | DOI | MR | Zbl

[19] V. V. Kozlov, Matem. zametki, 45:4 (1989), 46–52 | DOI | MR | Zbl

[20] G. D. Birkhoff, Dynamical Systems, AMS, New York, 1927 ; E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies with an Introduction to the Problem of Three Bodies, Cambridge Univ. Press., Cambridge, 1937 | MR | Zbl | MR | Zbl

[21] J. Hietarinta, Phys. Rep., 147 (1987), 87–154 | DOI | MR