Universally coupled massive gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 311-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive Einstein's equations from a linear theory in flat space–time using free-field gauge invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. We adapt these results to yield universally coupled massive variants of Einstein's equations, yielding two one-parameter families of distinct theories with spin $2$ and spin $0$. The Freund–Maheshwari–Schonberg theory is therefore not the unique universally coupled massive generalization of Einstein's theory, although it is privileged in some respects. The theories we derive are a subset of those found by Ogievetsky and Polubarinov by other means. The question of positive energy, which continues to be discussed, might be addressed numerically in spherical symmetry. We briefly comment on the issue of causality with two observable metrics and the need for gauge freedom and address some criticisms by Padmanabhan of field derivations of Einstein-like equations along the way.
Keywords: massive gravity, bimetric, ghost, positive mass, causality.
@article{TMF_2007_151_2_a9,
     author = {J. B. Pitts and W. C. Schieve},
     title = {Universally coupled massive gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--336},
     year = {2007},
     volume = {151},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a9/}
}
TY  - JOUR
AU  - J. B. Pitts
AU  - W. C. Schieve
TI  - Universally coupled massive gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 311
EP  - 336
VL  - 151
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a9/
LA  - ru
ID  - TMF_2007_151_2_a9
ER  - 
%0 Journal Article
%A J. B. Pitts
%A W. C. Schieve
%T Universally coupled massive gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 311-336
%V 151
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a9/
%G ru
%F TMF_2007_151_2_a9
J. B. Pitts; W. C. Schieve. Universally coupled massive gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 311-336. http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a9/

[1] The Collected Papers of Albert Einstein. Vol. 8. The Berlin Years: Correspondence, 1914–1918, eds. R. Schulmann, A. J. Kox, M. Janssen, J. Illy, Princeton Univ. Press, Princeton, NJ, 1998 ; The Collected Papers of Albert Einstein. Vol. 4. The Swiss Years: Writings, 1912–1914, eds. A. Beck, D. Howard, Princeton Univ. Press, Princeton, NJ, 1996 ; M. Janssen, Ann. Phys. (8), 14:S1 (2005), 58 | MR | Zbl | MR | Zbl | DOI | MR

[2] M. Janssen, J. Renn, “Untying the knot: How Einstein found his way back to field equations discarded in the Zurich notebook”, The Genesis of General Relativity: Sources and Interpretations. Vol. 2. Einstein's Zurich Notebook: Commentary and Essays, Boston Stud. Phil. Sci., 250, ed. J. Renn, Springer (to appear) | Zbl

[3] M. Fierz, W. Pauli, Proc. Roy. Soc. London, Ser. A, 173 (1939), 211 ; N. Rosen, Phys. Rev., 57 (1940), 147 ; 150 ; A. Papapetrou, Proc. Roy. Irish Acad. Sect. A, 52 (1948), 11 ; S. N. Gupta, Phys. Rev., 96 (1954), 1683 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[4] R. H. Kraichnan, Phys. Rev., 98 (1955), 1118 | DOI | MR | Zbl

[5] M. Kohler, Z. Phys., 134 (1953), 286 | DOI | MR | Zbl

[6] R. P. Feynman, F. B. Morinigo, W. G. Wagner, B. Hatfield, J. Preskill, K. S. Thorne, Feynman Lectures on Gravitation, Addison-Wesley, Reading, MA, 1995 (original by California Institute of Technology, 1963)

[7] V. I. Ogievetsky, I. V. Polubarinov, Ann. Phys., 35 (1965), 167 | DOI

[8] S. Weinberg, Phys. Rev., 138 (1965), B988 | DOI | MR

[9] S. Deser, Gen. Relativity Gravitation, 1 (1970), 9 ; gr-qc/0411023 | DOI | MR

[10] L. P. Grishchuk, A. N. Petrov, A. D. Popova, Commun. Math. Phys., 94 (1984), 379 | DOI | MR

[11] A. A. Logunov, M. A. Mestvirishvili, TMF, 86:1 (1991), 3 | DOI | MR | Zbl

[12] J. B. Pitts, W. C. Schieve, Gen. Relativity Gravitation, 33 (2001), 1319 ; gr-qc/0101058 | DOI | MR | Zbl

[13] J. B. Pitts, W. C. Schieve, Found. Phys., 34 (2004), 211 ; gr-qc/0406102 | DOI | MR | Zbl

[14] N. Boulanger, M. Esole, Classical Quantum Gravity, 19 (2002), 2107 ; gr-qc/0110072 | DOI | MR | Zbl

[15] S. Deser, Classical Quantum Gravity, 4 (1987), L99 | DOI | MR | Zbl

[16] N. Boulanger, T. Damour, L. Gualtieri, M. Henneaux, Nucl. Phys. B, 597 (2001), 127 ; hep-th/0007220 | DOI | MR | Zbl

[17] S. V. Babak, L. P. Grishchuk, Phys. Rev. D, 61 (2000), 024038 ; gr-qc/9907027 | DOI | MR

[18] N. Pinto-Neto, P. I. Trajtenberg, Braz. J. Phys., 30:1 (2000), 181 | DOI | MR

[19] T. Padmanabhan, From gravitons to gravity: myths and realit, gr-qc/0409089 | MR

[20] M. Visser, Gen. Relativity Gravitation, 30 (1998), 1717 ; gr-qc/9705051 | DOI | MR | Zbl

[21] S. V. Babak, L. P. Grishchuk, Int. J. Mod. Phys. D, 12 (2003), 1905 ; gr-qc/0209006 | DOI | MR | Zbl

[22] I. V. Tyutin, E. S. Fradkin, YaF, 15 (1972), 597

[23] P. G. O. Freund, A. Maheshwari, E. Schonberg, Astrophys. J., 157 (1969), 857 | DOI

[24] D. G. Boulware, S. Deser, Phys. Rev. D, 6 (1972), 3368 | DOI

[25] W. Israel, Differential Forms in General Relativity, 2nd ed., Dublin Institute for Advanced Studies, Dublin, 1979 | MR | Zbl

[26] P. van Nieuwenhuizen, Nucl. Phys. B, 60 (1973), 478 | DOI | MR

[27] P. Havas, “Energy-momentum tensors in special and general relativity”, Developments in General Relativity, Astrophysics, and Quantum Theory, A Jubilee Volume in Honour of Nathan Rosen, eds. F. I. Cooperstock, L. P. Horwitz, J. Rosen, IOP, Bristol; Israel Phys. Soc., Jerusalem, 1990, 131 | MR

[28] E. Kretschmann, Ann. Phys. (8), 53 (1917), 575 | Zbl

[29] J. L. Anderson, Principles of Relativity Physics, Academic, New York, 1967 | Zbl

[30] M. Friedman, Foundations of Space–Time Theories: Relativistic Physics and Philosophy of Science, Princeton Univ. Press, Princeton, N. J., 1983 | MR

[31] J. D. Norton, Erkenntnis, 42 (1995), 223 | DOI | MR

[32] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977 | MR | MR

[33] J. B. Pitts, Stud. Hist. Philos. Sci. B. Stud. Hist. Philos. Modern Phys., 37 (2006), 347 ; gr-qc/0506102 | DOI | MR | Zbl

[34] D. Gullini, “Some remarks on the notions of general covariancve and background independence”, Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, Lect. Notes Phys., 721, eds. E. Seiler, I.-O. Stamatescue, Springer, New York, 2007 ; gr-qc/0603087 | MR

[35] P. Bergmann, “Topics in the theory of general relativity”, Lectures in Theoretical Physics, Brandeis University Summer Institute in Theoretical Physics, Benjamin, New York, 1957, notes by N. A. Wheeler; R. U. Sexl, Fortschr. Phys., 15 (1967), 269 ; J. Stachel, “The meaning of general covariance: The hole story”, Philosophical Problems of the Internal and External Worlds, Essays on the Philosophy of Adolf Grünbaum, eds. J. Earman, A. I. Janis, G. J. Massey, N. Rescher, Univ. of Pittsburgh, Pittsburgh; Universitätsverlag, Konstanz, 1993, 129 | DOI

[36] M. J. Gotay, J. E. Marsden, “Stress-energy-momentum tensors and the Belinfante–Rosenfeld formula”, Mathematical Aspects of Classical Field Theory (Seattle, 1991), Contemp. Math., 132, eds. M. J. Gotay, J. E. Marsden, V. Moncrief, Amer. Math. Soc., Providence, RI, 1992, 367 ; http://www.math.hawaii.edu/g̃otay/SEMTensors.pdf | DOI | MR | Zbl

[37] V. I. Ogievetskii, I. V. Polubarinov, ZhETF, 48 (1965), 1625 ; Р. Ф. Билялов, Изв. вузов. Сер. матем., 2002, No 11, 8 | MR | MR | Zbl

[38] Selected Papers of Léon Rosenfeld, eds. R. S. Cohen, J. J. Stachel, Reidel, Dordrecht, 1979 | MR | MR | Zbl

[39] N. Rosen, “Flat space and variational principle”, Perspectives in Geometry and Relativity, Essays in Honor of Vácclav Hlavatý, ed. B. Hoffmann, Indiana Univ., Bloomington, 1966, 325 ; Gen. Relativity Gravitation, 4 (1973), 435 ; R. D. Sorkin, Mod. Phys. Lett. A, 17 (2002), 695 ; http://philsci-archive.pitt.edu/archive/00000565/ | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[40] R. M. Wald, General Relativity, Univ. of Chicago, Chicago, 1984 | MR | Zbl

[41] E. R. Huggins, Quantum Mechanics of the Interaction of Gravity with Electrons: Theory of a Spin-Two Field Coupled to Energy, PhD thesis, California Institute of Technology, Pasadena, 1962

[42] A. N. Petrov, J. Katz, Roy. Soc. London Proc. Ser. A, 458 (2002), 319 ; gr-qc/9911025 | DOI | MR | Zbl

[43] M. G. Hare, Canad. J. Phys., 51 (1973), 431 ; A. S. Goldhaber, M. M. Nieto, Phys. Rev. D, 9 (1974), 1119 ; L. S. Finn, P. J. Sutton, Phys. Rev. D, 65 (2002), 044022 ; gr-qc/0109049 | DOI | DOI | DOI

[44] S. Deser, “Bimetric gravity revisited”, Developments in General Relativity, Astrophysics, and Quantum Theory, A Jubilee volume in Honour of Nathan Rosen (Jerusalem and Haifa, 1989), Ann. Israel Phys. Soc., 9, eds. F. I. Cooperstock, L. P. Horwitz, J. Rosen, IOP, Bristol, 1990, 77 | MR

[45] V. I. Zakharov, Pisma v ZhETF, 12 (1970), 447 ; H. van Dam, M. Veltman, Nucl. Phys. B, 22 (1970), 397 ; Gen. Relativity Gravitation, 3 (1972), 215 ; M. Carrera, D. Giulini, Classical analysis of the van Dam–Veltman discontinuity, gr-qc/0107058 | DOI | DOI | Zbl

[46] Yu. M. Loskutov, TMF, 107:2 (1996), 329 | DOI | MR | Zbl

[47] K. Sundermeyer, Constrained Dynamics. With Applications to Yang–Mills Theory, General Relativity, Classical Spin, Dual String Model, Lecture Notes in Phys., 169, Springer, Berlin–New York, 1982 | MR | Zbl

[48] J. B. Pitts, J. Phys.: Conf. Ser., 33 (2006), 279 ; hep-th/0601185 | DOI

[49] A. Anderson, J. W. York, Jr., Phys. Rev. Lett., 81 (1998), 1154 ; gr-qc/9807041 | DOI | MR | Zbl

[50] S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, On one fundamental property of gravitational field in the field theory, gr-qc/0412122

[51] G. Velo, D. Zwanziger, Phys. Rev., 186 (1969), 1337 | DOI

[52] I. Schmelzer, General ether theorie and graviton mass, gr-qc/9811073

[53] Yu. V. Chugreev, TMF, 138:2 (2004), 349 | DOI | MR | Zbl

[54] N. Arkani-Hamed, H. Georgi, M. D. Schwartz, Ann. Phys., 305 (2003), 96 ; hep-th/0210184 | DOI | MR | Zbl

[55] R. Delbourgo, A. Salam, Lett. Nuovo Cimento, 12 (1975), 297 ; S. Hamamoto, Progr. Theor. Phys., 95 (1996), 441 ; 97 (1997), 141 ; M. J. Duff, J. T. Liu, H. Sati, Phys. Lett. B, 516 (2001), 156 ; ; F. A. Dilkes, M. J. Duff, J. T. Liu, H. Sati, Phys. Rev. Lett., 87 (2001), 041301 ; hep-th/0105008hep-th/0102093 | DOI | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR

[56] I. A. Batalin, I. V. Tyutin, Int. J. Mod. Phys. A, 6 (1991), 3255 | DOI | MR | Zbl

[57] A. S. Vytheeswaran, Int. J. Mod. Phys. A, 13 (1998), 765 ; hep-th/9701050 | DOI | MR | Zbl