@article{TMF_2007_151_2_a6,
author = {V. V. Belov and V. A. Maksimov},
title = {Semiclassical quantization of {Bohr} orbits in the~helium atom},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {261--286},
year = {2007},
volume = {151},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a6/}
}
V. V. Belov; V. A. Maksimov. Semiclassical quantization of Bohr orbits in the helium atom. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 261-286. http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a6/
[1] N. Bohr, Phil. Mag., 26 (1913), 1 ; 476 ; 857 | DOI | Zbl
[2] G. Tanner, K. Richter, J. Rost, Rev. Mod. Phys., 72 (2000), 497 | DOI
[3] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965 | MR | Zbl
[4] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[5] Zh. Lere, Lagranzhev analiz i kvantovaya mekhanika. Matematicheskaya struktura, svyazannaya s asimptoticheskimi razlozheniyami i indeksom Maslova, Mir, M., 1981 | MR | Zbl
[6] V. I. Arnold, Funkts. analiz i ego prilozh., 6:2 (1972), 12 | DOI | MR | Zbl
[7] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl
[8] V. V. Belov, S. Yu. Dobrokhotov, DAN SSSR. Ser. matem., 298:5 (1988), 1037 | MR | Zbl
[9] V. V. Belov, S. Yu. Dobrokhotov, TMF, 92:2 (1992), 215 | DOI | MR
[10] V. V. Belov, O. S. Dobrokhotov, S. Yu. Dobrokhotov, Matem. zametki, 69:4 (2001), 483 | DOI | MR | Zbl
[11] G. Wentzel, Z. Phys., 38 (1926), 518 | DOI | Zbl
[12] H. A. Kramers, Z. Phys., 13 (1923), 312 | DOI | MR
[13] L. Brillouin, C. R. Acad. Sci. Paris, 183 (1926), 24 | Zbl
[14] V. M. Babich, Zap. nauchn. sem. LOMI, 9 (1968), 15 | Zbl
[15] J. V. Ralston, Comm. Math. Phys., 51 (1976), 219 | DOI | MR | Zbl
[16] S. Yu. Dobrokhotov, N. N. Nekhoroshev, B. Valino, UMN, 39:3 (1984), 233 | DOI | MR | Zbl
[17] V. Belov, S. Dobrokhotov, V. Maksimov, Dokl. RAN, 381 (2001), 452 | MR | Zbl
[18] V. Belov, S. Dobrokhotov, V. Maksimov, TMF, 135:3 (2003), 378 | DOI | MR | Zbl
[19] V. V. Kozlov, Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UGU, Izhevsk, 1995 | MR | Zbl
[20] V. V. Belov, V. A. Maksimov, Matem. zametki, 64:2 (1998), 297 | DOI | MR | Zbl
[21] V. V. Belov, V. A. Maksimov, Russ. J. Math. Phys., 7 (2000), 363 | MR | Zbl
[22] V. V. Belov, S. Yu. Dobrokhotov, V. M. Olive, Dokl. RAN. Ser. fiz., 331:2 (1993), 150–154 | MR | Zbl
[23] S. Yu. Dobrokhotov, V. Martínez-Olivé, A. I. Shafarevich, Russ. J. Math. Phys., 3 (1995), 133 | MR | Zbl
[24] V. V. Belov, J. L. Volkova, Russ. J. Math. Phys., 1 (1993), 409 | MR | Zbl
[25] V. Belov, V. Olivé, J. Volkova, Phys. A, 28 (1995), 5799 | DOI | MR | Zbl
[26] S. Dobrokhotov, V. Martines-Olive, Tr. MMO, 58 (1997), 3 | MR | Zbl
[27] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR | Zbl
[28] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1983 | MR
[29] A. Einstein, Verh. Dtsch. Phys. Ges., 19 (1917), 82
[30] J. Keller, Ann. Phys., 4 (1958), 180 | DOI | MR | Zbl
[31] A. Sommerfeld, Ann. Phys., 356:17 (1916), 1 | DOI
[32] A. Voros, “Exact anharmonic quantization condition (in one dimension)”, Quasiclassical Methods (Minneapolis, MN, USA, 1995), IMA Vol. Math. Appl., 95, eds. J. Rauch, B. Simon, Springer, New York, 1997, 189 | DOI | MR | Zbl
[33] A. Voros, “The WKB-Maslov method for nonseparable systems”, Géométrie symplectique et physique mathematique (Aix-en-Provence, 1974), ed. J.-M. Souriau, Éditions du CNRS, Paris, 1975, 277 | MR
[34] S. Yu. Dobrokhotov, A. I. Shafarevich, “Kvaziklassicheskoe kvantovanie izotropnykh mnogoobrazii gamiltonovykh sistem”, Topologicheskie metody v teorii gamiltonovykh sistem, eds. A. V. Bolsinov, A. T. Fomenko, A. I. Shafarevich, Faktorial, M., 1998, 41; S. Yu. Dobrokhotov, A. I. Shafarevich, Russ. J. Math. Phys., 5 (1997), 267 ; М. В. Карасев, Квантовая редукция на орбиты алгебр симметрий и задача Эренфеста, Препринт ИТФ-87-157Р, ИТФ АН УССР, Киев, 1988; M. V. Karasev, Yu. M. Vorob'ev, “Adapted connections, Hamiltonian dynamics, geometric phases, and quantization over isotropic submanifolds”, Coherent Transform, Quantization and Poisson Geometry, Amer. Math. Soc. Transl. Ser. 2, 187, ed. M. V. Karasev, Amer. Math. Soc., Providence, RI, 1998, 203 | MR | Zbl | MR
[35] J. E. Marsden, A. Weinstein, Rep. Math. Phys., 5 (1974), 121 | DOI | MR | Zbl
[36] V. V. Belov, E. M. Vorobev, Sbornik zadach po dopolnitelnym glavam matematicheskoi fiziki, Vysshaya shkola, M., 1978 | MR
[37] I. I. Sobelman, Vvedenie v teoriyu atomnykh spektrov, GIFML, M., 1968
[38] I. Langmuir, Phys. Rev., 17 (1921), 339 | DOI
[39] U. Fano, Rep. Prog. Phys., 46 (1983), 97 ; D. Wintgen, A. Bürgers, K. Richter, G. Tanner, Progr. Theor. Phys. Suppl., 116 (1994), 121 ; J. A. West, Z. D. Gaeta, C. R. Stroud, Jr., Phys. Rev. A, 58:1 (1998), 186 | DOI | DOI | DOI
[40] J. Müller, J. Burgdörfer, Phys. Rev. Lett., 70:16 (1993), 2375 ; J. Müller, X. Yang, J. Burgdörfer, Phys. Rev. A, 49:4 (1994), 2470 | DOI | DOI | MR
[41] K. Richter, D. Wintgen, Phys. Rev. Lett., 65:15 (1990), 1965 ; F. Benvenuto, G. Casati, D. L. Shepelyansky, Phys. Rev. A, 53 (1996), 737 | DOI | DOI
[42] U. Eichmann, V. Lange, W. Sandner, Phys. Rev. Lett., 64 (1990), 274 ; 68 (1992), 21 | DOI | DOI
[43] K. Richter, D. Wintgen, J. Phys. B, 23 (1990), L197 | DOI
[44] K. Richter, D. Wintgen, J. Phys. B, 24 (1991), L565 | DOI
[45] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York, 1990 | MR | Zbl
[46] A. Bürgers, D. Wintgen, J. Phys. B, 27 (1994), L131 ; J. Müller, J. Burgdörfer, D. Noid, Phys. Rev. A, 45:3 (1992), 1471 ; P. Gaspard, S. A. Rice, Phys. Rev. A, 48:1 (1993), 54 | DOI | DOI | DOI | MR
[47] S. D. Bergeson, A. Balakrishnan, K. G. H. Baldwin et al., Phys. Rev. Lett., 80 (1998), 3475 | DOI
[48] V. V. Belov, V. A. Maksimov, TMF, 126:3 (2001), 455 | DOI | Zbl
[49] G. Bete, E. Solpiter, Kvantovaya mekhanika atomov s odnim i dvumya elektronami, Fizmatgiz, M., 1969 | MR | Zbl