Semiclassical quantization of Bohr orbits in the helium atom
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 261-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the complex WKB–Maslov method to construct the semiclassical spectral series corresponding to the resonance Bohr orbits in the helium atom. The semiclassical energy levels represented as the Rydberg tetra series correspond to the doubly symmetrically excited states of helium-like atoms. This level series contains the Rydberg triple series reported by Richter and Wintgen in 1991, which corresponds to the $Z^{2+}e^-e^-$ configuration of electrons observed by Eichmann and his collaborators in experiments on the laser excitation of the barium atom in 1992. The lower-level extrapolation of the formula obtained for the semiclassical spectrum gives the value of the ground state energy, which differs by 6% from the experimental value obtained by Bergeson and his collaborators in 1998. We also calculate the fine structure of the semiclassical spectrum due to the spin–orbit and spin–spin interactions of electrons.
Keywords: semiclassical quantization, spectral series, complex WKB–Maslov method, generalized action–angle variable, generalized harmonic oscillator variable.
@article{TMF_2007_151_2_a6,
     author = {V. V. Belov and V. A. Maksimov},
     title = {Semiclassical quantization of {Bohr} orbits in the~helium atom},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {261--286},
     year = {2007},
     volume = {151},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a6/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - V. A. Maksimov
TI  - Semiclassical quantization of Bohr orbits in the helium atom
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 261
EP  - 286
VL  - 151
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a6/
LA  - ru
ID  - TMF_2007_151_2_a6
ER  - 
%0 Journal Article
%A V. V. Belov
%A V. A. Maksimov
%T Semiclassical quantization of Bohr orbits in the helium atom
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 261-286
%V 151
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a6/
%G ru
%F TMF_2007_151_2_a6
V. V. Belov; V. A. Maksimov. Semiclassical quantization of Bohr orbits in the helium atom. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 261-286. http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a6/

[1] N. Bohr, Phil. Mag., 26 (1913), 1 ; 476 ; 857 | DOI | Zbl

[2] G. Tanner, K. Richter, J. Rost, Rev. Mod. Phys., 72 (2000), 497 | DOI

[3] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965 | MR | Zbl

[4] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[5] Zh. Lere, Lagranzhev analiz i kvantovaya mekhanika. Matematicheskaya struktura, svyazannaya s asimptoticheskimi razlozheniyami i indeksom Maslova, Mir, M., 1981 | MR | Zbl

[6] V. I. Arnold, Funkts. analiz i ego prilozh., 6:2 (1972), 12 | DOI | MR | Zbl

[7] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl

[8] V. V. Belov, S. Yu. Dobrokhotov, DAN SSSR. Ser. matem., 298:5 (1988), 1037 | MR | Zbl

[9] V. V. Belov, S. Yu. Dobrokhotov, TMF, 92:2 (1992), 215 | DOI | MR

[10] V. V. Belov, O. S. Dobrokhotov, S. Yu. Dobrokhotov, Matem. zametki, 69:4 (2001), 483 | DOI | MR | Zbl

[11] G. Wentzel, Z. Phys., 38 (1926), 518 | DOI | Zbl

[12] H. A. Kramers, Z. Phys., 13 (1923), 312 | DOI | MR

[13] L. Brillouin, C. R. Acad. Sci. Paris, 183 (1926), 24 | Zbl

[14] V. M. Babich, Zap. nauchn. sem. LOMI, 9 (1968), 15 | Zbl

[15] J. V. Ralston, Comm. Math. Phys., 51 (1976), 219 | DOI | MR | Zbl

[16] S. Yu. Dobrokhotov, N. N. Nekhoroshev, B. Valino, UMN, 39:3 (1984), 233 | DOI | MR | Zbl

[17] V. Belov, S. Dobrokhotov, V. Maksimov, Dokl. RAN, 381 (2001), 452 | MR | Zbl

[18] V. Belov, S. Dobrokhotov, V. Maksimov, TMF, 135:3 (2003), 378 | DOI | MR | Zbl

[19] V. V. Kozlov, Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UGU, Izhevsk, 1995 | MR | Zbl

[20] V. V. Belov, V. A. Maksimov, Matem. zametki, 64:2 (1998), 297 | DOI | MR | Zbl

[21] V. V. Belov, V. A. Maksimov, Russ. J. Math. Phys., 7 (2000), 363 | MR | Zbl

[22] V. V. Belov, S. Yu. Dobrokhotov, V. M. Olive, Dokl. RAN. Ser. fiz., 331:2 (1993), 150–154 | MR | Zbl

[23] S. Yu. Dobrokhotov, V. Martínez-Olivé, A. I. Shafarevich, Russ. J. Math. Phys., 3 (1995), 133 | MR | Zbl

[24] V. V. Belov, J. L. Volkova, Russ. J. Math. Phys., 1 (1993), 409 | MR | Zbl

[25] V. Belov, V. Olivé, J. Volkova, Phys. A, 28 (1995), 5799 | DOI | MR | Zbl

[26] S. Dobrokhotov, V. Martines-Olive, Tr. MMO, 58 (1997), 3 | MR | Zbl

[27] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR | Zbl

[28] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1983 | MR

[29] A. Einstein, Verh. Dtsch. Phys. Ges., 19 (1917), 82

[30] J. Keller, Ann. Phys., 4 (1958), 180 | DOI | MR | Zbl

[31] A. Sommerfeld, Ann. Phys., 356:17 (1916), 1 | DOI

[32] A. Voros, “Exact anharmonic quantization condition (in one dimension)”, Quasiclassical Methods (Minneapolis, MN, USA, 1995), IMA Vol. Math. Appl., 95, eds. J. Rauch, B. Simon, Springer, New York, 1997, 189 | DOI | MR | Zbl

[33] A. Voros, “The WKB-Maslov method for nonseparable systems”, Géométrie symplectique et physique mathematique (Aix-en-Provence, 1974), ed. J.-M. Souriau, Éditions du CNRS, Paris, 1975, 277 | MR

[34] S. Yu. Dobrokhotov, A. I. Shafarevich, “Kvaziklassicheskoe kvantovanie izotropnykh mnogoobrazii gamiltonovykh sistem”, Topologicheskie metody v teorii gamiltonovykh sistem, eds. A. V. Bolsinov, A. T. Fomenko, A. I. Shafarevich, Faktorial, M., 1998, 41; S. Yu. Dobrokhotov, A. I. Shafarevich, Russ. J. Math. Phys., 5 (1997), 267 ; М. В. Карасев, Квантовая редукция на орбиты алгебр симметрий и задача Эренфеста, Препринт ИТФ-87-157Р, ИТФ АН УССР, Киев, 1988; M. V. Karasev, Yu. M. Vorob'ev, “Adapted connections, Hamiltonian dynamics, geometric phases, and quantization over isotropic submanifolds”, Coherent Transform, Quantization and Poisson Geometry, Amer. Math. Soc. Transl. Ser. 2, 187, ed. M. V. Karasev, Amer. Math. Soc., Providence, RI, 1998, 203 | MR | Zbl | MR

[35] J. E. Marsden, A. Weinstein, Rep. Math. Phys., 5 (1974), 121 | DOI | MR | Zbl

[36] V. V. Belov, E. M. Vorobev, Sbornik zadach po dopolnitelnym glavam matematicheskoi fiziki, Vysshaya shkola, M., 1978 | MR

[37] I. I. Sobelman, Vvedenie v teoriyu atomnykh spektrov, GIFML, M., 1968

[38] I. Langmuir, Phys. Rev., 17 (1921), 339 | DOI

[39] U. Fano, Rep. Prog. Phys., 46 (1983), 97 ; D. Wintgen, A. Bürgers, K. Richter, G. Tanner, Progr. Theor. Phys. Suppl., 116 (1994), 121 ; J. A. West, Z. D. Gaeta, C. R. Stroud, Jr., Phys. Rev. A, 58:1 (1998), 186 | DOI | DOI | DOI

[40] J. Müller, J. Burgdörfer, Phys. Rev. Lett., 70:16 (1993), 2375 ; J. Müller, X. Yang, J. Burgdörfer, Phys. Rev. A, 49:4 (1994), 2470 | DOI | DOI | MR

[41] K. Richter, D. Wintgen, Phys. Rev. Lett., 65:15 (1990), 1965 ; F. Benvenuto, G. Casati, D. L. Shepelyansky, Phys. Rev. A, 53 (1996), 737 | DOI | DOI

[42] U. Eichmann, V. Lange, W. Sandner, Phys. Rev. Lett., 64 (1990), 274 ; 68 (1992), 21 | DOI | DOI

[43] K. Richter, D. Wintgen, J. Phys. B, 23 (1990), L197 | DOI

[44] K. Richter, D. Wintgen, J. Phys. B, 24 (1991), L565 | DOI

[45] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York, 1990 | MR | Zbl

[46] A. Bürgers, D. Wintgen, J. Phys. B, 27 (1994), L131 ; J. Müller, J. Burgdörfer, D. Noid, Phys. Rev. A, 45:3 (1992), 1471 ; P. Gaspard, S. A. Rice, Phys. Rev. A, 48:1 (1993), 54 | DOI | DOI | DOI | MR

[47] S. D. Bergeson, A. Balakrishnan, K. G. H. Baldwin et al., Phys. Rev. Lett., 80 (1998), 3475 | DOI

[48] V. V. Belov, V. A. Maksimov, TMF, 126:3 (2001), 455 | DOI | Zbl

[49] G. Bete, E. Solpiter, Kvantovaya mekhanika atomov s odnim i dvumya elektronami, Fizmatgiz, M., 1969 | MR | Zbl