Decay law for a quasistationary state of the Schrödinger operator for a crystal film
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 248-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Schrödinger operator in a cell corresponding to a crystal film pattern, eigenvalues may exist in the continuous spectrum and become resonances under perturbations. We prove that the corresponding decay law in a nonstationary approach is exponential for a nondegenerate (in some cases, degenerate) eigenvalue.
Keywords: Schrödinger operator, resonance, crystal film.
@article{TMF_2007_151_2_a5,
     author = {Yu. P. Chuburin},
     title = {Decay law for a~quasistationary state of {the~Schr\"odinger} operator for a~crystal film},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {248--260},
     year = {2007},
     volume = {151},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a5/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - Decay law for a quasistationary state of the Schrödinger operator for a crystal film
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 248
EP  - 260
VL  - 151
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a5/
LA  - ru
ID  - TMF_2007_151_2_a5
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T Decay law for a quasistationary state of the Schrödinger operator for a crystal film
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 248-260
%V 151
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a5/
%G ru
%F TMF_2007_151_2_a5
Yu. P. Chuburin. Decay law for a quasistationary state of the Schrödinger operator for a crystal film. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 248-260. http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a5/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | Zbl

[2] Yu. P. Chuburin, TMF, 110 (1997), 443–453 | DOI | MR | Zbl

[3] Yu. P. Chuburin, TMF, 143 (2005), 417–430 | DOI | MR | Zbl

[4] W. Hunziker, Commun. Math. Phys, 132 (1990), 177–188 | DOI | MR | Zbl

[5] A. Orth, Commun. Math. Phys., 126 (1990), 559–573 ; A. Jensen, G. Nenciu, Commun. Math. Phys., 261 (2006), 693–727 ; On the Fermi golden rule: degenerate eigenvalues, Preprint mp_arc/06-157, , 2006 http://www.ma.utexas.edu/mp_arc/c/06/06-157.pdf | DOI | MR | Zbl | DOI | MR | Zbl

[6] L. Cattaneo, G. M. Graft, W. Hunziker, Ann. Inst. Henri Poincaré, 7 (2006), 583–601 | DOI | MR | Zbl

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 3. Teoriya rasseyaniya, Mir, M., 1982 | MR | Zbl

[8] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[9] B. V. Shabat, Vvedenie v kompleksnyi analiz. Ch. II. Funktsii neskolkikh peremennykh, Nauka, M., 1976 | MR | Zbl

[10] S. Albeverio, F. Gestezi, R. Khëeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[11] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[12] A. Martineau, “Distributions et valeurs au bord des fonctions holomorphes”, Theory of Distributions, Proc. Int. Summer Inst. (Lisbon, 1964), Inst. Gulbenkian Ci., Lisbon, 1964, 193–326 | MR

[13] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl