Localization properties of~highly singular generalized functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 179-194

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the localization properties of generalized functions defined on a broad class of spaces of entire analytic test functions. This class, which includes all Gelfand–Shilov spaces $S^{\beta}_{\alpha}(\mathbb R^k)$ with $\beta1$, provides a convenient language for describing quantum fields with a highly singular infrared behavior. We show that the carrier cone notion, which replaces the support notion, can be correctly defined for the considered analytic functionals. In particular, we prove that each functional has a uniquely determined minimal carrier cone.
Keywords: generalized function, analytic functional, infrared singularity, carrier cone, plurisubharmonic function, Hörmander's $L_2$ estimates.
@article{TMF_2007_151_2_a0,
     author = {A. G. Smirnov},
     title = {Localization properties of~highly singular generalized functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {151},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/}
}
TY  - JOUR
AU  - A. G. Smirnov
TI  - Localization properties of~highly singular generalized functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 179
EP  - 194
VL  - 151
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/
LA  - ru
ID  - TMF_2007_151_2_a0
ER  - 
%0 Journal Article
%A A. G. Smirnov
%T Localization properties of~highly singular generalized functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 179-194
%V 151
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/
%G ru
%F TMF_2007_151_2_a0
A. G. Smirnov. Localization properties of~highly singular generalized functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 179-194. http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/