Localization properties of highly singular generalized functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 179-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the localization properties of generalized functions defined on a broad class of spaces of entire analytic test functions. This class, which includes all Gelfand–Shilov spaces $S^{\beta}_{\alpha}(\mathbb R^k)$ with $\beta<1$, provides a convenient language for describing quantum fields with a highly singular infrared behavior. We show that the carrier cone notion, which replaces the support notion, can be correctly defined for the considered analytic functionals. In particular, we prove that each functional has a uniquely determined minimal carrier cone.
Keywords: generalized function, analytic functional, infrared singularity, carrier cone, plurisubharmonic function
Mots-clés : Hörmander's $L_2$ estimates.
@article{TMF_2007_151_2_a0,
     author = {A. G. Smirnov},
     title = {Localization properties of~highly singular generalized functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--194},
     year = {2007},
     volume = {151},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/}
}
TY  - JOUR
AU  - A. G. Smirnov
TI  - Localization properties of highly singular generalized functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 179
EP  - 194
VL  - 151
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/
LA  - ru
ID  - TMF_2007_151_2_a0
ER  - 
%0 Journal Article
%A A. G. Smirnov
%T Localization properties of highly singular generalized functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 179-194
%V 151
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/
%G ru
%F TMF_2007_151_2_a0
A. G. Smirnov. Localization properties of highly singular generalized functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 179-194. http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/

[1] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR | Zbl | Zbl

[2] A. Z. Capri, R. Ferrari, J. Math. Phys., 25 (1984), 141 | DOI | MR

[3] R. F. Striter, A. S. Vaitman, PCT, spin i statistika i vse takoe, Nauka, M., 1966 | MR | Zbl

[4] E. Brüning, S. Nagamachi, J. Math. Phys., 30 (1989), 2340 | DOI | MR | Zbl

[5] U. Moschella, F. Strocchi, Lett. Math. Phys., 24 (1992), 103 | DOI | MR | Zbl

[6] M. A. Soloviev, Lett. Math. Phys., 33 (1995), 49 | DOI | MR | Zbl

[7] M. A. Soloviev, Commun. Math. Phys., 184 (1997), 579 | DOI | MR | Zbl

[8] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 2. Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | MR | Zbl | Zbl

[9] A. G. Smirnov, M. A. Solovev, TMF, 125:1 (2000), 57 | DOI | MR | Zbl

[10] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 3. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR | MR | Zbl | Zbl

[11] A. G. Smirnov, On topological tensor products of functional Fréchet and DF spaces, math.FA/0512611 | MR

[12] H. Komatsu, J. Math. Soc. Japan, 19 (1967), 366 | DOI | MR | Zbl

[13] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | MR | Zbl | Zbl

[14] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR | MR | Zbl

[15] L. Hörmander, Notions of Convexity, Progr. Math., 127, Birkhäuser, Boston, 1994 | MR | Zbl