Localization properties of~highly singular generalized functions
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 179-194
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the localization properties of generalized functions defined on 
a broad class of spaces of entire analytic test functions. This class, which
includes all Gelfand–Shilov spaces $S^{\beta}_{\alpha}(\mathbb R^k)$ with
$\beta1$, provides a convenient language for describing quantum fields with
a highly singular infrared behavior. We show that the carrier cone notion,
which replaces the support notion, can be correctly defined for 
the considered analytic functionals. In particular, we prove that each functional
has a uniquely determined minimal carrier cone.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
generalized function, analytic functional, infrared singularity, carrier cone, plurisubharmonic function, Hörmander's $L_2$ estimates.
                    
                  
                
                
                @article{TMF_2007_151_2_a0,
     author = {A. G. Smirnov},
     title = {Localization properties of~highly singular generalized functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {151},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/}
}
                      
                      
                    A. G. Smirnov. Localization properties of~highly singular generalized functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 2, pp. 179-194. http://geodesic.mathdoc.fr/item/TMF_2007_151_2_a0/
