Solutions of the Vlasov equation in Lagrange coordinates
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 138-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the method of "finite-size" particles is a discrete model of the Vlasov equation but in a different (effective) interaction potential. We calculate the effective potential explicitly in the most interesting case of the Coulomb interaction. We find the equations of motion of particles of "finite size" for the Gaussian form factor.
Keywords: discrete model of the Vlasov equation, "finite-size" particle, self-consistent field.
@article{TMF_2007_151_1_a8,
     author = {Yu. A. Volkov},
     title = {Solutions of {the~Vlasov} equation in {Lagrange} coordinates},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {138--148},
     year = {2007},
     volume = {151},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a8/}
}
TY  - JOUR
AU  - Yu. A. Volkov
TI  - Solutions of the Vlasov equation in Lagrange coordinates
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 138
EP  - 148
VL  - 151
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a8/
LA  - ru
ID  - TMF_2007_151_1_a8
ER  - 
%0 Journal Article
%A Yu. A. Volkov
%T Solutions of the Vlasov equation in Lagrange coordinates
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 138-148
%V 151
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a8/
%G ru
%F TMF_2007_151_1_a8
Yu. A. Volkov. Solutions of the Vlasov equation in Lagrange coordinates. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 138-148. http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a8/

[1] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 ; Нелокальная статистическая механика, Наука, М., 1978 | MR | MR

[2] C. K. Birdsall, D. Fuss, J. Comput. Phys., 3 (1969), 494 ; C. K. Birdsall, A. B. Langdon, H. Okuda, “Finite-Size Particle Physics Applied to Plasma Simulation”, Methods in Computational Physics, v. 9 (Plasma Physics), eds. B. Alder, S. Fernbach, M. Rotenberg, Academic Press, New York–London, 1970, 241 | DOI

[3] R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill Inc., New York, 1981

[4] W. Brown, K. Hepp, Commun. Math. Phys., 56 (1977), 101 | DOI | MR

[5] H. Neunzert, J. Wick, Numerische Matematik, 21 (1973), 234 ; H. Neunzert, Fluid Dyn. Trans., 9 (1977), 229 | DOI | MR | Zbl

[6] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[7] Yu. S. Sigov, Yu. V. Khodyrev, K teorii diskretnykh modelei plazmy, Preprint No 83, IPM AN SSSR, M., 1975

[8] Yu. S. Sigov, Chislennye metody kineticheskoi teorii plazmy, MFTI, M., 1984

[9] A. A. Arsenev, Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992 | MR | Zbl

[10] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1967 | MR | Zbl | Zbl

[11] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR | Zbl

[12] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Dobrosvet, M., 2000 | MR | Zbl

[13] J. M. Dawson, “The Electrostatic Sheet Model for a Plasma and its Modification to Finite Size Particles”, Methods of Computational Physics, v. 9 (Plasma Physics), eds. B. Alder, S. Fernbach, M. Rotenberg, Academic Press, New York–London, 1970, 1