Fine-grained and coarse-grained entropy in problems of statistical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 120-137
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider dynamical systems with a phase space $\Gamma$ that preserve a measure $\mu$. A partition of $\Gamma$ into parts of finite $\mu$-measure generates the coarse-grained entropy, a functional that is defined on the space of probability measures on $\Gamma$ and generalizes the usual (ordinary or fine-grained) Gibbs entropy. We study the approximation properties of the coarse-grained entropy under refinement of the partition and also the properties of the coarse-grained entropy as a function of time.
Keywords: invariant measure, Gibbs entropy, coarse-grained entropy.
@article{TMF_2007_151_1_a7,
     author = {V. V. Kozlov and D. V. Treschev},
     title = {Fine-grained and coarse-grained entropy in problems of statistical mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {120--137},
     year = {2007},
     volume = {151},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a7/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - D. V. Treschev
TI  - Fine-grained and coarse-grained entropy in problems of statistical mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 120
EP  - 137
VL  - 151
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a7/
LA  - ru
ID  - TMF_2007_151_1_a7
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A D. V. Treschev
%T Fine-grained and coarse-grained entropy in problems of statistical mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 120-137
%V 151
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a7/
%G ru
%F TMF_2007_151_1_a7
V. V. Kozlov; D. V. Treschev. Fine-grained and coarse-grained entropy in problems of statistical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 120-137. http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a7/

[1] R. Bouen, Metody simvolicheskoi dinamiki, Mir, M., 1979

[2] M. Kats, Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965 | Zbl

[3] N. S. Krylov, Raboty po obosnovaniyu statisticheskoi fiziki, Izd-vo AN SSSR, M.–L., 1950

[4] A. Puankare, “Zamechaniya o kineticheskoi teorii gazov”, Izbrannye trudy, t. III, Nauka, M., 1974 | MR

[5] Dzh. V. Gibbs, Termodinamika. Statisticheskaya mekhanika, Nauka, M., 1982 | MR

[6] V. V. Kozlov, D. V. Treschev, TMF, 136:3 (2003), 496–506 | DOI | MR | Zbl

[7] V. V. Kozlov, D. V. Treschev, TMF, 134:3 (2003), 388–400 | DOI | MR | Zbl

[8] S. V. Gonchenko, D. V. Turaev, L. P. Shilnikov, Dokl. RAN, 407:3 (2006), 299–303 | MR | Zbl