Fine-grained and coarse-grained entropy in problems of statistical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 120-137

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider dynamical systems with a phase space $\Gamma$ that preserve a measure $\mu$. A partition of $\Gamma$ into parts of finite $\mu$-measure generates the coarse-grained entropy, a functional that is defined on the space of probability measures on $\Gamma$ and generalizes the usual (ordinary or fine-grained) Gibbs entropy. We study the approximation properties of the coarse-grained entropy under refinement of the partition and also the properties of the coarse-grained entropy as a function of time.
Keywords: invariant measure, Gibbs entropy, coarse-grained entropy.
@article{TMF_2007_151_1_a7,
     author = {V. V. Kozlov and D. V. Treschev},
     title = {Fine-grained and coarse-grained entropy in problems of statistical mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {120--137},
     publisher = {mathdoc},
     volume = {151},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a7/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - D. V. Treschev
TI  - Fine-grained and coarse-grained entropy in problems of statistical mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 120
EP  - 137
VL  - 151
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a7/
LA  - ru
ID  - TMF_2007_151_1_a7
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A D. V. Treschev
%T Fine-grained and coarse-grained entropy in problems of statistical mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 120-137
%V 151
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a7/
%G ru
%F TMF_2007_151_1_a7
V. V. Kozlov; D. V. Treschev. Fine-grained and coarse-grained entropy in problems of statistical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 120-137. http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a7/