Toda chain, Stieltjes function, and orthogonal polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 81-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss relations between the theory of orthogonal polynomials, Hankel determinants, and the unrestricted one-dimensional Toda chain. In particular, we show that the equations of motion for the Toda chain are equivalent to a Riccati equation for the Stieltjes function. We consider some examples of the Stieltjes function with an explicit (hypergeometric and elliptic) time dependence in detail.
Keywords: integrable system, Toda chain
Mots-clés : orthogonal polynomial.
@article{TMF_2007_151_1_a5,
     author = {F. Peherstorfer and V. P. Spiridonov and A. S. Zhedanov},
     title = {Toda chain, {Stieltjes} function, and orthogonal polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {81--108},
     year = {2007},
     volume = {151},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a5/}
}
TY  - JOUR
AU  - F. Peherstorfer
AU  - V. P. Spiridonov
AU  - A. S. Zhedanov
TI  - Toda chain, Stieltjes function, and orthogonal polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 81
EP  - 108
VL  - 151
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a5/
LA  - ru
ID  - TMF_2007_151_1_a5
ER  - 
%0 Journal Article
%A F. Peherstorfer
%A V. P. Spiridonov
%A A. S. Zhedanov
%T Toda chain, Stieltjes function, and orthogonal polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 81-108
%V 151
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a5/
%G ru
%F TMF_2007_151_1_a5
F. Peherstorfer; V. P. Spiridonov; A. S. Zhedanov. Toda chain, Stieltjes function, and orthogonal polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 81-108. http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a5/

[1] T. S. Chihara, An introduction to orthogonal polynomials, Math. Appl., 13, Gordon and Breach, New York, 1978 | MR | Zbl

[2] F. Peherstorfer, J. Comput. Appl. Math., 133 (2001), 519–534 | DOI | MR | Zbl

[3] G. A. Baker, P. Graves-Morris, Padé approximants, Parts I, II, Encyclopedia Math. Appl., 13, 14, Addison-Wesley, Reading, MA, 1981 | MR | Zbl | Zbl

[4] M. Toda, Theory of nonlinear lattices, Springer Ser. Solid-State Sci., 20, Springer, Berlin, 1989 | DOI | MR | Zbl

[5] J. Moser, “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Dynamical systems, theory and applications, Lecture Notes in Phys., 38, Springer, Berlin, 1975, 467–497 ; K. Sogo, J. Phys. Soc. Japan, 62:6 (1993), 1887–1894 ; K. L. Vaninsky, J. Geom. Phys., 46 (2003), 283–307 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[6] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[7] E. M. Nikishin, “Diskretnyi operator Shturma–Liuvillya i nekotorye problemy teorii funktsii”, Tr. sem. im. I. G. Petrovskogo, 10, 1984, 3–77 ; K. Aomoto, RIMS Kokyuroku, 1227 (2001), 14–60 | MR | Zbl

[8] G. Teschl, Jacobi operators and completely integrable nonlinear lattices, Math. Surveys Monogr., 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[9] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada, Funkcial. Ekvac., 44 (2001), 291–307 | MR | Zbl

[10] N. Joshi, K. Kajiwara, M. Mazzocco, “Generating function associated with the determinant formula for the solutions of the Painlevé II equation”, Complex analysis, dynamical systems, summability of divergent series and Galois theories. II, Volume in honor of Jean-Pierre Ramis. Proc. conf. (Toulouse, France, September 22–26, 2003), Astérisque, 297, ed. M. Loday-Richaud, Soc. Math. France, Paris, 2004, 67–78 | MR | Zbl

[11] Y. Nakamura, A. Zhedanov, J. Phys. A, 37 (2004), 5849–5862 | DOI | MR | Zbl

[12] S. Karlin, Total positivity, vol. I, Stanford Univ. Press, Stanford, California, 1968 | MR | Zbl

[13] L. Vinet, A. S. Zhedanov, J. Comput. Appl. Math., 172 (2004), 41–48 | DOI | MR | Zbl

[14] Y. Kametaka, Proc. Japan Acad. Ser. A, 60 (1984), 145–148 ; 181–184 | DOI | MR | Zbl | MR

[15] K. Okamoto, J. Fac. Sci. Univ. Tokyo, 34 (1987), 709–740 | MR | Zbl

[16] G. A. Natanzon, Vestn. LGU, 1971, no. 10, 22–28 ; ТМФ, 38:2 (1979), 219–229 | MR | DOI | MR | Zbl

[17] O. V. Bychuk, V. P. Spiridonov, Mod. Phys. Lett. A, 5 (1990), 1007–1012 | DOI

[18] N. M. Temme, J. Comput. Appl. Math., 153 (2003), 441–462 ; math.CA/0205065 | DOI | MR | Zbl

[19] A. S. Zhedanov, TMF, 82:1 (1990), 11–17 | DOI | MR

[20] F. Peherstorfer, SIAM J. Math. Anal., 21 (1990), 461–482 ; J. Approx. Theory, 64 (1991), 123–161 ; P. Maroni, Adv. Comput. Math., 3:1–2 (1995), 59–88 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[21] B. A. Dubrovin, UMN, 36:2 (1981), 11–80 | DOI | MR | Zbl

[22] E. L. Ince, Ordinary differential equations, Dover, New York, 1956 | MR | Zbl

[23] E. T. Uitteker i Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatgiz, M., 1963 | Zbl

[24] J. Moser, Integrable Hamiltonian systems and spectral theory, Lezione Fermiane, Pisa, 1981 | MR | Zbl

[25] S. Skorik, V. Spiridonov, Phys. Lett. A, 190 (1994), 90–95 | DOI | MR | Zbl