@article{TMF_2007_151_1_a4,
author = {R. I. Yamilov},
title = {Integrability conditions for an~analogue of the~relativistic {Toda} chain},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {66--80},
year = {2007},
volume = {151},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a4/}
}
R. I. Yamilov. Integrability conditions for an analogue of the relativistic Toda chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 66-80. http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a4/
[1] S. N. M. Ruijsenaars, Comm. Math. Phys., 133 (1990), 217–247 | DOI | MR | Zbl
[2] Yu. B. Suris, J. Phys. A, 30 (1997), 1745–1761 | DOI | MR | Zbl
[3] V. E. Adler, A. B. Shabat, TMF, 111 (1997), 323–334 | DOI | MR | Zbl
[4] V. V. Sokolov, A. B. Shabat, Sov. Sci. Rev. Sect. C, 4 (1984), 221–280 ; A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is Integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | MR | Zbl | DOI | MR | Zbl
[5] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4 (1987), 3–53 | DOI | MR | Zbl
[6] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125 (2000), 355–424 | DOI | MR | Zbl
[7] R. I. Yamilov, UMN, 38:6 (1983), 155–156 ; R. I. Yamilov, “Classification of Toda type scalar lattices”, Nonlinear evolution equations and dynamical systems NEEDS{'}92, Proc. of the Eighth International Workshop (Dubna, Russia, 1992), eds. V. Makhankov, I. Puzynin, O. Pashaev, World Scientific, River Edge, NJ, 1993, 423–431 | MR
[8] D. Levi, R. Yamilov, J. Math. Phys., 38 (1997), 6648–6674 ; R. Yamilov, D. Levi, J. Nonlinear Math. Phys., 11 (2004), 75–101 | DOI | MR | Zbl | DOI | MR | Zbl
[9] R. Yamilov, J. Phys. A, 39 (2006), R541–R623 | DOI | MR | Zbl
[10] R. I. Yamilov, TMF, 139 (2004), 209–224 | DOI | MR | Zbl
[11] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, Comm. Math. Phys., 115 (1988), 1–19 | DOI | MR | Zbl