Hamiltonians associated with the sixth Painlevé equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 54-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the formula determining the general form of polynomial Hamiltonians associated with the sixth Painlevé equation and prove its uniqueness. We prove the existence of nonpolynomial Hamiltonians associated with this equation. We identify the Hamiltonian class for which the defining differential equation coincides with the equation ($h$-equation) for the simplest polynomial Hamiltonian (the Okamoto Hamiltonian).
Mots-clés : Painlevé equation, Heun equation.
Keywords: Hamiltonian, family of solutions, Bäcklund transformation
@article{TMF_2007_151_1_a3,
     author = {V. V. Tsegel'nik},
     title = {Hamiltonians associated with the~sixth {Painlev\'e} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {54--65},
     year = {2007},
     volume = {151},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a3/}
}
TY  - JOUR
AU  - V. V. Tsegel'nik
TI  - Hamiltonians associated with the sixth Painlevé equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 54
EP  - 65
VL  - 151
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a3/
LA  - ru
ID  - TMF_2007_151_1_a3
ER  - 
%0 Journal Article
%A V. V. Tsegel'nik
%T Hamiltonians associated with the sixth Painlevé equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 54-65
%V 151
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a3/
%G ru
%F TMF_2007_151_1_a3
V. V. Tsegel'nik. Hamiltonians associated with the sixth Painlevé equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 54-65. http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a3/

[1] R. Fuchs, C. R. Acad. Sci. Paris, 141 (1905), 555–558

[2] B. Gambier, C. R. Acad. Sci. Paris, 142 (1906), 266–269 | Zbl

[3] K. Takasaki, J. Math. Phys., 42 (2001), 1443–1473 | DOI | MR | Zbl

[4] R. Fuchs, Math. Ann., 63 (1907), 301–321 | DOI | MR | Zbl

[5] P. Painlevè, C. R. Acad. Sci. Paris, 143 (1906), 1111–1147

[6] K. Okamoto, Ann. Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl

[7] Yu. I. Manin, “Sixth Painlevé equation, universal elliptic curve, and mirror of $\mathbf P^2$”, Geometry of Differential Equations, Dedicated to V. I. Arnold on the occasion of his 60th birthday, AMS Transl, Ser. 2, 186, eds. A. Khovanskii, A. Varchenko, V. Vassiliev, AMS, Providence, RI, 1998, 131–151 | MR | Zbl

[8] D. Guzzetti, Commun. Pure Appl. Math., 55 (2002), 1280–1363 | DOI | MR | Zbl

[9] V. V. Tsegelnik, Dokl. AN BSSR, 29:6 (1985), 497–500 | MR | Zbl

[10] V. I. Gromak, V. V. Tsegelnik, TMF, 78:1 (1989), 22–34 | MR | Zbl

[11] M. Mazzocco, J. Phys. A, 34 (2001), 2281–2294 | DOI | MR | Zbl

[12] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lectures given at the 1st session of the Centro Internazionale Matematico Estivo (CIME) (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Math., 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 ; B. Dubrovin, M. Mazzocco, Invent. Math., 141 (2000), 55–147 ; M. Mazzocco, Math. Ann., 321 (2001), 157–195 ; F. V. Andreev, A. V. Kitaev, Commun. Math. Phys., 228 (2002), 151–176 ; T. Masuda, Funkc. Ekvacioj. Ser. Int., 46 (2003), 121–171 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[13] N. A. Lukashevich, A. I. Yablonskii, Diff. uravneniya, 3 (1967), 520–523 | MR | Zbl

[14] N. A. Lukashevich, Diff. uravneniya, 8 (1972), 1404–1408 | MR | Zbl

[15] V. I. Gromak, N. A. Lukashevich, Diff. uravneniya, 18 (1982), 419–429 | MR | Zbl

[16] A. V. Kitaev, J. Phys., 23 (1990), 3543–3553 ; A. S. Fokas, Y. C. Yourtsos, Lett. Nuovo Cimento, 30 (1981), 539–544 | DOI | MR | Zbl | DOI | MR

[17] A. V. Kitaev, Lett. Math. Phys., 21 (1991), 105–111 ; V. E. Adler, Physica D, 73 (1994), 335–351 ; F. Nijhoff, A. Hone, N. Joshi, Phys. Lett. A, 264 (2000), 396–406 ; R. Conte, M. Mussette, Phys. Lett. A, 34 (2001), 10507–10522 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[18] F. Nijhoff, A. Hone, N. Joshi, Phys. Lett. A, 267 (2000), 147–156 | DOI | MR | Zbl

[19] V. I. Gromak, “Bäcklund transformations of Painlevè equations and their applications”, The Painlevè Property. One Century Later (Cargèse School, 3–22 June, 1996), CRM Ser. in Math. Phys., ed. R. Conte, Springer, New York, 1999, 687–734 | MR | Zbl

[20] K. Okamoto, Proc. Japan Acad. Ser. A. Math. Sci., 56:6 (1980), 264–268 ; 56:8, 367–371 | DOI | MR | Zbl | DOI | MR | Zbl

[21] J. Malmquist, Ark. Mat., Astron. Fys., 17:8 (1923), 1–89 | MR

[22] M. Jimbo, T. Miwa, Physica D, 2 (1981), 407–448 | DOI | MR | Zbl

[23] M. Jimbo, Publ. RIMS Kyoto Univ., 18 (1982), 1137–1161 | DOI | MR | Zbl

[24] V. I. Gromak, N. A. Lukashevich, Analiticheskie svoistva reshenii uravnenii Penleve, Universitetskoe izdatelstvo, Minsk, 1990 | MR | Zbl

[25] C. M. Cosgrove, J. Phys. A, 10 (1977), 1481–1524 ; P. Dale, Proc. Roy. Soc. London. A, 362 (1978), 463–464 ; Э. Шмутцер (ред.), Точные решения уравнений Эйнштейна, Энергоиздат, М., 1982 | DOI | MR | DOI | MR | MR

[26] M. Jimbo, T. Miwa, Proc. Japan Acad. Ser. A. Math. Sci., 56 (1980), 405–410 | DOI | MR

[27] M. Kashiwara, T. Miwa, Proc. Japan Acad. Ser. A. Math. Sci., 57 (1981), 342–347 | DOI | MR | Zbl

[28] P. Haine, J.-P. Semengue, J. Math. Phys., 40 (1999), 2117–2134 | DOI | MR | Zbl

[29] A. Borodin, P. Deift, Commun. Pure Appl. Math., 55 (2002), 1160–1230 ; N. S. Witte, P. J. Forrester, Nagoya Math. J., 174 (2004), 29–114 | DOI | MR | Zbl | DOI | MR | Zbl

[30] V. V. Tsegelnik, Dokl. BGUIR, 2004, no. 2, 64–72

[31] L. Schlesinger, J. Math., 141 (1912), 96–145 ; G. Mahoux, “Introduction to the theory of isomonodromic deformations on linear ordinary differential equations with rational coefficients”, The Painlevè Property. One Century Later (Cargèse School, 3–22 June, 1996), CRM Ser. in Math. Phys., ed. R. Conte, Springer, New York, 1999, 35–76 | Zbl | MR | Zbl

[32] S. Yu. Slavyanov, J. Phys. A, 29 (1996), 7329–7335 ; С. Ю. Славянов, ТМФ, 123:3 (2000), 395–406 | DOI | MR | Zbl | DOI | MR | Zbl

[33] S. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, S.-Pb., 2002