Mots-clés : quantum entanglement.
@article{TMF_2007_151_1_a2,
author = {M. Saniga and M. Planat},
title = {Projective line over the~finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: {Theoretical} background},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {44--53},
year = {2007},
volume = {151},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a2/}
}
TY - JOUR AU - M. Saniga AU - M. Planat TI - Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: Theoretical background JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2007 SP - 44 EP - 53 VL - 151 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a2/ LA - ru ID - TMF_2007_151_1_a2 ER -
%0 Journal Article %A M. Saniga %A M. Planat %T Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: Theoretical background %J Teoretičeskaâ i matematičeskaâ fizika %D 2007 %P 44-53 %V 151 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a2/ %G ru %F TMF_2007_151_1_a2
M. Saniga; M. Planat. Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: Theoretical background. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 44-53. http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a2/
[1] G. Törner, F. D. Veldkamp, J. Geom., 42 (1991), 180–200 | DOI | MR | Zbl
[2] M. Saniga, M. Planat, J. Phys. A, 39 (2006), 435–440 ; math-ph/0506057 | DOI | MR | Zbl
[3] M. Saniga, M. Planat, Chaos Solitons Fractals, math.NT/0601261
[4] F. D. Veldkamp, Geom. Dedicata, 11 (1981), 285–308 ; “Projective ring planes and their homomorphisms”, Rings and Geometry (Istanbul, 1984), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 160, eds. R. Kaya, P. Plaumann, K. Strambach, Reidel, Dordrecht, 1985, 289–350 ; “Projective ring planes: some special cases”, Proc. Conf. on Combinatorial and Incidence Geometry: Principles and Applications (La Mendola, 1982), Rend. Sem. Mat. Brescia, 7, Vita e Pensiero, Milan, 1984, 609–615 | DOI | MR | Zbl | MR | Zbl | MR | Zbl
[5] F. D. Veldkamp, “Geometry over rings”, Handbook of incidence geometry, ed. F. Buekenhout, North-Holland, Amsterdam, 1995, 1033–1084 | DOI | MR | Zbl
[6] J. Hjelmslev, Hamb. Math. Abh., 2 (1923), 1–36 ; W. Klingenberg, Math. Z., 60 (1954), 384–406 ; E. Kleinfeld, Illinois J. Math., 3 (1959), 403–407 ; P. Dembowski, Finite geometries, Springer, Berlin, New York, 1968 ; D. A. Drake, D. Jungnickel, “Finite Hjelmslev planes and Klingenberg epimorphism”, Rings and Geometry, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 160, eds. R. Kaya, P. Plaumann, K. Strambach, Reidel, Dordrecht, 1985, 153–231 | DOI | Zbl | DOI | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl
[7] J. B. Fraleigh, A first course in abstract algebra, Addison-Wesley, Reading, MA, 1994 ; B. R. McDonald, Finite rings with identity, Pure Appl. Math., 28, Dekker, New York, 1974 ; R. Raghavendran, Compos. Math., 21 (1969), 195–229 | MR | Zbl | MR | Zbl | MR | Zbl
[8] A. Herzer, “Chain geometries”, Handbook of incidence geometry, ed. F. Buekenhout, North-Holland, Amsterdam, 1995, 781–842 | DOI | MR | Zbl
[9] A. Blunck, H. Havlicek, Abh. Math. Sem. Univ. Hamburg, 70 (2000), 287–299 | DOI | MR | Zbl
[10] A. Blunck, H. Havlicek, Math. Pannon., 14 (2003), 113–127 | MR | Zbl
[11] H. Havlicek, Quad. Sem. Mat. Brescia, 11 (2006), 1–63; http://www.geometrie.tuwien.ac.at/havlicek/dd-laguerre.pdf
[12] N. D. Mermin, Rev. Mod. Phys., 65:3 (1993), 803–815 | DOI | MR
[13] S. Kochen, E. Specker, J. Math. Mech., 17 (1967), 59–87 | MR | Zbl
[14] M. Saniga, M. Planat, TMF, 151:2 (2007), 219–227 | DOI | MR