Compatible Lie–Poisson brackets on the Lie algebras $e(3)$ and $so(4)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 26-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We completely classify the compatible Lie–Poisson brackets on the dual spaces of the Lie algebras $e(3)$ and $so(4)$. The corresponding bi-Hamiltonian systems are the spinning tops corresponding to the classical cases of integrability of the Euler equations, the Kirchhoff equations, and the Poincaré–Zhukovskii equations.
Keywords: integrable system, bi-Hamiltonian manifold
Mots-clés : Lie–Poisson tensor.
@article{TMF_2007_151_1_a1,
     author = {A. V. Tsiganov},
     title = {Compatible {Lie{\textendash}Poisson} brackets on {the~Lie} algebras $e(3)$ and $so(4)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {26--43},
     year = {2007},
     volume = {151},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a1/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Compatible Lie–Poisson brackets on the Lie algebras $e(3)$ and $so(4)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 26
EP  - 43
VL  - 151
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a1/
LA  - ru
ID  - TMF_2007_151_1_a1
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Compatible Lie–Poisson brackets on the Lie algebras $e(3)$ and $so(4)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 26-43
%V 151
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a1/
%G ru
%F TMF_2007_151_1_a1
A. V. Tsiganov. Compatible Lie–Poisson brackets on the Lie algebras $e(3)$ and $so(4)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 151 (2007) no. 1, pp. 26-43. http://geodesic.mathdoc.fr/item/TMF_2007_151_1_a1/

[1] Y. Kosmann-Schwarzbach, F. Magri, Ann. Inst. H. Poincaré, 53 (1990), 35–81 | MR | Zbl

[2] F. Magri, “Eight lectures on integrable systems”, Integrability of nonlinear systems, Proc. of the CIMPA school (Pondicherry, 1996), Lecture Notes in Phys., 495, Springer, Berlin, 1997, 256–296 | DOI | MR | Zbl

[3] I. M. Gelfand, I. Zakharevich, “On the local geometry of a bi-Hamiltonian structure”, The Gelfand mathematical seminars, 1990–1992, eds. L. Corwin et al., Birkäuser, Boston, 1993, 51–112 | DOI | MR | Zbl

[4] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, IKS, M.–Izhevsk, 2005 | MR | Zbl

[5] J. A. Schouten, “On the differential operators of first order in tensor calculus”, Convegno internazionale di geometria differenziale (Italia, 1953), Edizioni cremonese, Roma, 1954, 1–7 | MR | Zbl

[6] A. Lichnerowicz, J. Diff. Geom., 12 (1977), 253–300 | DOI | MR | Zbl

[7] A. V. Bolsinov, Izv. AN SSSR. Ser. matem., 55:1 (1991), 68–92 | MR | Zbl

[8] A. V. Bolsinov, A. V. Borisov, Matem. zametki, 72 (2002), 11–34 | DOI | MR | Zbl

[9] A. P. Fordy, O. I. Mokhov, Physica D, 152–153 (2001), 475–490 | DOI | MR | Zbl

[10] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M.; Izd-vo UdGU, Izhevsk, 1995 | MR | Zbl

[11] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, RKhD, M.–Izhevsk, 2003

[12] A. Clebsch, Math. Annal., 3 (1870), 238–262 | DOI | MR | Zbl

[13] V. V. Sokolov, T. Wolf, J. Phys. A, 39 (2006), 1915–1926 | DOI | MR | Zbl

[14] A. M. Lyapunov, Soobsch. Khark. matem. ob-va. Ser. 2, 4 (1893), 81–85 | MR

[15] V. A. Steklov, Ann. Fac. Sci. Toulouse, Ser. 3, 1 (1909), 145–256 | DOI

[16] G. V. Kolosov, Izv. RAN, 13 (1919), 711–716 | Zbl

[17] A. V. Tsiganov, Regul. Chaotic Dyn., 9:2 (2004), 77–89 | DOI | MR | Zbl

[18] F. Schottky, “Ueber das analytishe Problem der Rotation eines starren Körpers in Raume von vier Dimsionen”, Sitzungsberichte drer Königligh preussischen Academie der Wissenschaften zu Berlin, 13, 1891, 227–232 | Zbl

[19] A. I. Bobenko, Funkts. analiz i ego prilozh., 20 (1986), 64–66 | DOI | MR | Zbl

[20] A. V. Tsyganov, Zapiski nauch. sem. POMI, 317 (2004), 200–212 | MR | Zbl

[21] V. A. Steklov, O dvizhenii tverdogo tela v zhidkosti, Izd-vo Kharkovskogo un-ta, Kharkov, 1893

[22] H. Poincaré, Bull. Astr., 27 (1910), 321–356 | Zbl

[23] V. N. Rubanovskii, Vestn. MGU. Ser. 1. Matem., mekh., 23:2 (1968), 99–106 | MR | Zbl

[24] T. Ratiu, Amer. J. Math., 104 (1982), 409–448 | DOI | MR | Zbl

[25] I. D. Marshall, Comm. Math. Phys., 191 (1998), 723–734 | DOI | MR | Zbl

[26] I. V. Komarov, V. V. Sokolov, A. V. Tsiganov, J. Phys. A, 36 (2003), 8035–8048 | DOI | MR | Zbl

[27] C. Morosi, G. Tondo, J. Phys. A, 35 (2002), 1741–1750 | DOI | MR | Zbl