Wave-packet continuum discretization method for solving the three-body
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 3, pp. 473-497 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the wave-packet continuum discretization method previously developed for the scattering problem to the three-body system. For each asymptotic channel, we construct a basis of three-body wave packets given by square-integrable functions. We show that the projections of the channel resolvents on the subspace of three-body wave packets are determined by diagonal matrices, whose eigenvalues we find explicitly. We express the amplitudes of $2\to 2$ processes explicitly in terms of "wave-packet" finite-dimensional projections of the full resolvent. To illustrate our formalism, we calculate the differential cross section of elastic deuteron scattering on a heavy nucleus above the three-body breakup threshold and the $s$-wave quartet $(n-d)$-scattering amplitude. The results of the calculations agree well with the results obtained by other methods. In terms of complexity, the proposed scheme for solving the three-body scattering problem is comparable to solving a similar problem for bound states.
Keywords: quantum scattering theory, few-body system, discretization of the continuum.
@article{TMF_2007_150_3_a7,
     author = {V. I. Kukulin and V. N. Pomerantsev and O. A. Rubtsova},
     title = {Wave-packet continuum discretization method for solving the~three-body},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--497},
     year = {2007},
     volume = {150},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a7/}
}
TY  - JOUR
AU  - V. I. Kukulin
AU  - V. N. Pomerantsev
AU  - O. A. Rubtsova
TI  - Wave-packet continuum discretization method for solving the three-body
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 473
EP  - 497
VL  - 150
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a7/
LA  - ru
ID  - TMF_2007_150_3_a7
ER  - 
%0 Journal Article
%A V. I. Kukulin
%A V. N. Pomerantsev
%A O. A. Rubtsova
%T Wave-packet continuum discretization method for solving the three-body
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 473-497
%V 150
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a7/
%G ru
%F TMF_2007_150_3_a7
V. I. Kukulin; V. N. Pomerantsev; O. A. Rubtsova. Wave-packet continuum discretization method for solving the three-body. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 3, pp. 473-497. http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a7/

[1] L. D. Faddeev, ZhETF, 39 (1960), 1459 ; С. П. Меркурьев, Л. Д. Фаддеев, Квантовая теория рассеяния для систем нескольких частиц, Наука, М., 1985 | MR | MR | Zbl

[2] E. Shmid, Kh. Tsigelman, Problema trekh tel v kvantovoi mekhanike, Nauka, M., 1979 | MR

[3] C. Gignoux, A. Laverne, Phys. Rev. Lett., 29 (1972), 436 ; N. W. Schellingerhout, “Numerical methods in configuration-space $A=3,4$ bound-state and scattering calculations”, Few-Body Problems in Physics{'}93, Proc. XIVth European Conf. on Few-Body Problems in Physics (Amsterdam, Netherlands, 1993), eds. B. L. G. Bakker, R. van Dantzig, Springer, Wien, 1994, 361; V. M. Suslov, B. Vlahovic, Phys. Rev. C, 69 (2004), 044003 ; F. Ciesielski, J. Carbonell, Phys. Rev. C, 58 (1998), 58 | DOI | DOI | DOI

[4] W. Glöckle, H. Witała, D. Huber et al., Phys. Rep., 274 (1996), 107 | DOI

[5] R. Lazauskas, J. Carbonell, Phys. Rev. C, 70 (2004), 044002 | DOI

[6] W. Shadow, Ch. Elster, W. Glöckle, Three-body scattering below breakup threshold: an approach without using partial waves, nucl-th/9903020

[7] H. A. Yamani, M. S. Abdelmonem, J. Phys. B, 30 (1997), 1633 ; С. А. Зайцев, Ю. Ф. Смирнов, А. М. Широков, ТМФ, 117 (1998), 227 | DOI | MR | DOI | MR | Zbl

[8] J. J. Bevelacqua, R. J. Philpott, Nucl. Phys. A, 275 (1977), 301 | DOI

[9] N. Austern, C. M. Vincent, J. P. Farrell, Ann. Phys., 96 (1976), 333 ; 114 (1978), 93 | DOI | DOI | MR

[10] H. Amakawa, A. Mori, H. Nishioka et al., Phys. Rev. C, 23 (1981), 583 | DOI

[11] R. Y. Rasoanaivo, G. H. Rawitscher, Phys. Rev. C, 39 (1989), 1709 ; T. Matsumoto, T. Kamizato, K. Ogata et al., Phys. Rev. C, 68 (2003), 064607 | DOI | DOI

[12] J. R. Winick, W. P. Reinhardt, Phys. Rev. A, 18 (1978), 910 ; 925 | DOI | DOI

[13] M. Čižek, J. Horaček, H.-D. Meyer, Comput. Phys. Commun., 131 (2000), 41 | DOI | Zbl

[14] V. D. Efros, W. Leidemann, G. Orlandini, Phys. Rev. C, 58 (1998), 582 | DOI

[15] Z. Papp, W. Plessas, Phys. Rev. C, 54 (1996), 50 ; Z. Papp, S. L. Yakovlev, The three-body Coulomb scattering problem in discrete Hilbert-space basis representation, ; Z. Papp, C-.Y. Hu, Z. T. Hlousek et al., Phys. Rev. A, 63 (2001), 062721 nucl-th/9903078 | DOI | DOI

[16] V. I. Kukulin, O. A. Rubtsova, TMF, 130 (2002), 64 ; 134 (2003), 460 ; 139 (2004), 291 | DOI | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[17] V. I. Kukulin, O. A. Rubtsova, TMF, 145 (2005), 393 | DOI | MR | Zbl

[18] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971

[19] R. Kozack, F. S. Levin, Phys. Rev. C, 36 (1987), 883 | DOI

[20] O. A. Rubtsova, V. I. Kukulin, YaF, 64 (2001), 1769

[21] W. Glöckle, The Quantum Mechanical Few-Body Problem, Texts Monogr. Phys., Springer, Berlin, 1983 | MR

[22] C. R. Chen, G. L. Payne, J. L. Friar, B. F. Gibson, Phys. Rev. C, 39 (1989), 1261 | DOI