Characteristic function for the~stationary state of a~one-dimensional
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 3, pp. 391-408
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a practical method for calculating the characteristic function of
diffusion processes driven by Lévy white noise. The method is based on the Itô
formula for semimartingales, a differential equation developed for
the characteristic function of diffusion processes driven by Poisson white noise with
jumps that may not have finite moments, and on approximate representations of
the Lévy white noise process. Numerical results show that the proposed
method is very accurate and is consistent with previous theoretical findings.
Keywords:
diffusion with jumps, Lévy white noise, characteristic function, stationary solution
Mots-clés : Itô formula.
Mots-clés : Itô formula.
@article{TMF_2007_150_3_a2,
author = {G. P. Samorodnitsky and M. Grigoriu},
title = {Characteristic function for the~stationary state of a~one-dimensional},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {391--408},
publisher = {mathdoc},
volume = {150},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a2/}
}
TY - JOUR AU - G. P. Samorodnitsky AU - M. Grigoriu TI - Characteristic function for the~stationary state of a~one-dimensional JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2007 SP - 391 EP - 408 VL - 150 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a2/ LA - ru ID - TMF_2007_150_3_a2 ER -
G. P. Samorodnitsky; M. Grigoriu. Characteristic function for the~stationary state of a~one-dimensional. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 3, pp. 391-408. http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a2/