Characteristic function for the stationary state of a one-dimensional
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 3, pp. 391-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a practical method for calculating the characteristic function of diffusion processes driven by Lévy white noise. The method is based on the Itô formula for semimartingales, a differential equation developed for the characteristic function of diffusion processes driven by Poisson white noise with jumps that may not have finite moments, and on approximate representations of the Lévy white noise process. Numerical results show that the proposed method is very accurate and is consistent with previous theoretical findings.
Keywords: diffusion with jumps, characteristic function, stationary solution
Mots-clés : Lévy white noise, Itô formula.
@article{TMF_2007_150_3_a2,
     author = {G. P. Samorodnitsky and M. Grigoriu},
     title = {Characteristic function for the~stationary state of a~one-dimensional},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--408},
     year = {2007},
     volume = {150},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a2/}
}
TY  - JOUR
AU  - G. P. Samorodnitsky
AU  - M. Grigoriu
TI  - Characteristic function for the stationary state of a one-dimensional
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 391
EP  - 408
VL  - 150
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a2/
LA  - ru
ID  - TMF_2007_150_3_a2
ER  - 
%0 Journal Article
%A G. P. Samorodnitsky
%A M. Grigoriu
%T Characteristic function for the stationary state of a one-dimensional
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 391-408
%V 150
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a2/
%G ru
%F TMF_2007_150_3_a2
G. P. Samorodnitsky; M. Grigoriu. Characteristic function for the stationary state of a one-dimensional. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 3, pp. 391-408. http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a2/

[1] M. Grigoriu, Stochastic Calculus. Applications in Science and Engineering, Birkhäuser, Boston, 2002 | MR | Zbl

[2] M. Grigoriu, Probab. Eng. Mech., 19 (2004), 449–461 | DOI

[3] A. V. Chechkin, V. Yu. Gonchar, ZhETF, 118:3 (2000), 730–748

[4] V. Yu. Gonchar, L. V. Tanatarov, A. V. Chechkin, TMF, 131:1 (2002), 162–176 | DOI | MR | Zbl

[5] G. Samorodnitsky, M. Grigoriu, Stoch. Proc. Appl., 105:1 (2003), 69–97 | DOI | MR | Zbl

[6] T. G. Kurtz, P. Protter, Ann. Probab., 19:3 (1991), 1035–1070 | DOI | MR | Zbl

[7] M. Grigoriu, Applied Non-{G}aussian Processes: Examples, Theory, Simulation, Linear Random Vibration, and MATLAB Solutions, Prentice Hall PTR, Englewoods Cliffs, NJ, 1995 | MR | Zbl

[8] B. V. Gnedenko, Kurs teorii veroyatnostei, Mir, M., 1988 | MR | Zbl

[9] G. Samorodnitsky, M. S. Taqqu, Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance, Chapman Hall, N. Y., 1994 | MR | Zbl

[10] P. Protter, Stochastic Integration and Differential Equations, Appl. Math. (N. Y.), 21, Springer, Berlin, 1990 | MR | Zbl

[11] S. Asmussen, J. Rosiński, J. Appl. Probab., 38 (2001), 482–493 | DOI | MR | Zbl

[12] N. Fournier, S. Méléard, Bernoulli, 8:4 (2002), 537–558 | MR | Zbl