Keywords: ideal fluid
@article{TMF_2007_150_3_a0,
author = {M. A. Olshanetsky},
title = {Elliptic hydrodynamics and quadratic algebras of vector fields on a~torus},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--370},
year = {2007},
volume = {150},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a0/}
}
M. A. Olshanetsky. Elliptic hydrodynamics and quadratic algebras of vector fields on a torus. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 3, pp. 355-370. http://geodesic.mathdoc.fr/item/TMF_2007_150_3_a0/
[1] S. L. Ziglin, Dokl. AN, 250:6 (1980), 1296–1300 | MR | Zbl
[2] B. Khesin, A. Levin, M. Olshanetsky, Commun. Math. Phys., 250 (2004), 581–612 ; nlin.SI/0309017 | DOI | MR | Zbl
[3] E. K. Sklyanin, Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 ; А. В. Одесский, Б. Л. Фейгин, Функц. анализ и его прилож., 23:3 (1989), 45–54 | MR | Zbl | MR | Zbl
[4] M. V. Karasev, Izv. AN SSSR. Ser. matem., 50:3 (1986), 508–538 ; B. Fuchssteiner, Progr. Theoret. Phys., 68 (1982), 1082–1104 | MR | Zbl | DOI | MR | Zbl
[5] A. V. Belavin, V. G. Drinfeld, Funkts. analiz i ego prilozh., 16:3 (1982), 1–29 | MR | Zbl
[6] V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Appl. Math. Sci., 125, Springer, N. Y., 1998 | MR | Zbl
[7] V. I. Arnold, UMN, 24:3 (1969), 225–226 | MR | Zbl
[8] F. Magri, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[9] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lect. Notes Ser., 124, Cambridge Univ. Press, Cambridge, 1987 ; A. Cannas da Silva, A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Math. Lect. Notes, 10, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Appl. Math., Berkeley, CA, 1999 | MR | Zbl | MR | Zbl