Elliptic hypergeometric functions and Calogero–Sutherland-type models
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 311-324 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an elliptic analogue of the Gauss hypergeometric function and two of its multivariate generalizations. We describe their relation to elliptic beta integrals, the exceptional Weyl group $E_7$, the elliptic hypergeometric equation, and Calogero–Sutherland-type models.
Keywords: completely integrable system, Calogero–Sutherland model, hypergeometric function, elliptic function.
@article{TMF_2007_150_2_a9,
     author = {V. P. Spiridonov},
     title = {Elliptic hypergeometric functions and {Calogero{\textendash}Sutherland-type} models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--324},
     year = {2007},
     volume = {150},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a9/}
}
TY  - JOUR
AU  - V. P. Spiridonov
TI  - Elliptic hypergeometric functions and Calogero–Sutherland-type models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 311
EP  - 324
VL  - 150
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a9/
LA  - ru
ID  - TMF_2007_150_2_a9
ER  - 
%0 Journal Article
%A V. P. Spiridonov
%T Elliptic hypergeometric functions and Calogero–Sutherland-type models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 311-324
%V 150
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a9/
%G ru
%F TMF_2007_150_2_a9
V. P. Spiridonov. Elliptic hypergeometric functions and Calogero–Sutherland-type models. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 311-324. http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a9/

[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[2] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia Math. Appl., 96, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[3] V. P. Spiridonov, Ellipticheskie gipergeometricheskie funktsii, Diss. $\dots$ dokt. fiz.-matem. nauk, LTF OIYaI, Dubna, 2004

[4] V. P. Spiridonov, UMN, 56:1 (2001), 181–182 | DOI | MR | Zbl

[5] J. F. van Diejen, V. P. Spiridonov, Math. Res. Lett., 7 (2000), 729–746 | DOI | MR | Zbl

[6] V. P. Spiridonov, Algebra i analiz, 15:6 (2003), 161–215 | MR | Zbl

[7] E. M. Rains, Transformations of elliptic hypergeometric integrals, math.QA/0309252 | MR

[8] F. J. van de Bult, E. M. Rains, J. V. Stokman, Properties of generalized univariate hypergeometric functions, math.CA/0607250 | MR

[9] V. P. Spiridonov, A. S. Zhedanov, Comm. Math. Phys., 210 (2000), 49–83 | DOI | MR | Zbl

[10] I. B. Frenkel, V. G. Turaev, “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Geometry and Singularity Theory, eds. V. I. Arnold, M. I. Gelfand, V. S. Retakh, M. Smirnov, Birkhäuser, Boston, MA, 1997, 171–204 | DOI | MR | Zbl

[11] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94:6 (1983), 313–404 | DOI | MR

[12] V. I. Inozemtsev, Lett. Math. Phys., 17 (1989), 11–17 | DOI | MR | Zbl

[13] S. N. M. Ruijsenaars, Comm. Math. Phys., 110 (1987), 191–213 | DOI | MR | Zbl

[14] J. F. van Diejen, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR | Zbl

[15] Y. Komori, K. Hikami, J. Phys. A, 30 (1997), 4341–4364 | DOI | MR | Zbl

[16] S. N. M. Ruijsenaars, “Integrable $BC_N$ analytic difference operators: hidden parameter symmetries and eigenfunctions”, New Trends in Integrability and Partial Solvability, Proc. NATO Adv. Res. Workshop (Cadiz, Spain, 2002), NATO Sci. Ser. II Math. Phys. Chem., 132, eds. A. B. Shabat, A. González-López, M. Mañas, L. Martínez-Alonso, M. A. Rodrígues, Kluwer, Dordrecht, 2004, 217–261 | MR | Zbl

[17] J. F. van Diejen, V. P. Spiridonov, Int. Math. Res. Not., 2001, no. 20, 1083–1110 | MR | Zbl