Integrability of the Egorov systems of hydrodynamic type
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 263-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present integrability criterion for the Egorov systems of hydrodynamic type. We find the general solution by the generalized hodograph method and give examples. We discuss a description of triorthogonal curvilinear coordinate systems from the standpoint of reciprocal transformations.
Keywords: Hamiltonian structure, reciprocal transformation, Egorov metric, system of hydrodynamic type, extended hodograph method, generalized hodograph method.
Mots-clés : Riemann invariant
@article{TMF_2007_150_2_a6,
     author = {M. V. Pavlov},
     title = {Integrability of {the~Egorov} systems of hydrodynamic type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--285},
     year = {2007},
     volume = {150},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a6/}
}
TY  - JOUR
AU  - M. V. Pavlov
TI  - Integrability of the Egorov systems of hydrodynamic type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 263
EP  - 285
VL  - 150
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a6/
LA  - ru
ID  - TMF_2007_150_2_a6
ER  - 
%0 Journal Article
%A M. V. Pavlov
%T Integrability of the Egorov systems of hydrodynamic type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 263-285
%V 150
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a6/
%G ru
%F TMF_2007_150_2_a6
M. V. Pavlov. Integrability of the Egorov systems of hydrodynamic type. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 263-285. http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a6/

[1] B. A. Dubrovin, S. P. Novikov, Dokl. AN SSSR, 270 (1983), 781–785 ; УМН, 44:6 (1989), 29–98 | MR | Zbl | MR | Zbl

[2] S. P. Tsarev, Dokl. AN SSSR, 282 (1985), 534–537 ; Изв. АН СССР. Сер. матем., 54:5 (1990), 1048–1068 | MR | Zbl | MR | Zbl

[3] S. P. Tsarev, “On the integrability of the averaged KdV and Benney equations”, Singular Limits and Dispersive Waves, Proc. NATO Adv. Res. Workshop (Lyon, France, 1991), NATO ASI Ser., Ser. B, Phys., 320, eds. N. M. Ercolani, I. R. Gabitov, C. D. Levermore, D. Serre, Plenum, New York, 1994, 143–155 ; “Classical differential geometry and integrability of systems of hydrodynamic type”, Applications of analytic and geometrical methods to nonlinear differential equations, Proc. NATO Adv. Res. Workshop (Exeter, UK, 1992), NATO ASI Ser., Ser. C, Math. Phys. Sci., 413, ed. P. A. Clarkson, Kluwer, Dordrecht, 1993, 241–249 ; S. P. Tsarev, “Integrability of equations of hydrodynamic type from the end of the 19th to the end of the 20th century”, Integrability: the Seiberg–Witten and Whitham equations, eds. H. W. Braden, I. M. Krichever, Gordon and Breach, Amsterdam, 2000, 251–265 | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[4] M. V. Pavlov, S. P. Tsarev, UMN, 46:4 (1991), 169–170 ; М. В. Павлов, Докл. РАН, 338:1 (1994), 33–34 ; 338:2 (1994), 165–167 ; 338:3 (1994), 317–319 ; 339:2 (1994), 157–161 ; 339:3 (1994), 311–313 ; УМН, 49:1 (1994), 219–220 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[5] M. V. Pavlov, S. P. Tsarev, Funkts. analiz i ego prilozh., 37:1 (2003), 38–54 | DOI | MR | Zbl

[6] I. M. Krichever, Funkts. analiz i ego prilozh., 31:1 (1997), 32–50 ; А. А. Ахметшин, И. М. Кричевер, Ю. С. Волвовский, УМН, 54:2 (1999), 167–168 | DOI | MR | Zbl | DOI | MR | Zbl

[7] V. E. Zakharov, Funkts. analiz i ego prilozh., 14:2 (1980), 15–24 | MR | Zbl

[8] B. A. Dubrovin, Nucl. Phys. B, 379 (1992), 627–689 | DOI | MR

[9] B. A. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, Italy, 1993), Lecture Notes in Math., 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[10] J. Gibbons, Physica D, 3:3 (1981), 503–511 | DOI | MR | Zbl

[11] J. Gibbons, Y. Kodama, Phys. Lett. A, 135:3 (1989), 167–170 ; Y. Kodama, Phys. Lett. A, 147 (1990), 477–482 | DOI | MR | DOI | MR

[12] I. M. Krichever, “Whitham theory for integrable systems and topological quantum field theories”, New symmetry principles in quantum field theory (Cargese, France, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, eds. J. Frolich, G. 't Hooft, A. Jaffe, G. Mack, P. K. Mitter, R. Stora, Plenum, New York, 1992, 309–327 ; Comm. Pure Appl. Math., 47 (1994), 437–475 ; M. Mañas, E. Medina, L. M. Alonso, J. Phys. A, 39 (2006), 2349–2381 ; M. Mañas, L. M. Alonso, E. Medina, J. Phys. A, 33 (2000), 2871–2894 ; 7181–7206 ; Q. P. Liu, M. Manas, J. Phys. A, 32 (1999), 5921–5927 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[13] V. E. Zakharov, Physica D, 3 (1981), 193–200 | DOI

[14] G. Darboux, Lecçons sur les systèmes orthogonaux et les coordonnèes curvilignes, Gautier-Villars, Paris, 1910 | MR | Zbl

[15] D. F. Egorov, Raboty po differentsialnoi geometrii, Nauka, M., 1970 | MR | Zbl

[16] L. Bianchi, Sisteme tripli ortogonali, Opere, vol. III, Cremonese, Roma, 1955 | MR | Zbl

[17] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya v gazovoi dinamike, Nauka, M., 1978 | MR | Zbl

[18] Y. Nutku, J. Math. Phys., 28:11 (1987), 2579–2585 | DOI | MR | Zbl

[19] E. V. Ferapontov, K. R. Khusnutdinova, M. V. Pavlov, TMF, 144:1 (2005), 35–43 | DOI | MR | Zbl

[20] E. V. Ferapontov, Geom. Dedicata, 103 (2004), 33–49 | DOI | MR | Zbl

[21] O. I. Mokhov, Tr. MI RAN, 225, 1999, 284–300 | MR | Zbl

[22] E. V. Ferapontov, O. I. Mokhov, Funkts. analiz i ego prilozh., 30:3 (1996), 62–72 ; E. V. Ferapontov, C. A. P. Galvao, O. I. Mokhov, Y. Nutku, Comm. Math. Phys., 186 (1997), 649–669 ; O. I. Mokhov, “Differential equations of associativity in 2D topological field theories and geometry of nondiagonalizable systems of hydrodynamic type”, Nonlinearity and integrability: from mathematics to physics, Abstracts Int. Conf. on Integrable Systems (Montpellier, France, 1995), 1995; E. V. Ferapontov, O. I. Mokhov, “The equations of associativity as hydrodynamic type systems: Hamiltonian representation and the integrability”, Nonlinear physics. Theory and experiment. Nature, structure and properties of nonlinear phenomena, Proc. Int. Workshop (Lecce, Italy, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Scientific, River Edge, N.Y., 1996, 104–115 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[23] O. I. Mokhov, “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl., Ser. 2, 170, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 121–151 | MR | Zbl

[24] M. V. Pavlov, Matem. zametki, 57:5 (1995), 704–711 ; С. П. Царев, Матем. заметки, 46:1 (1989), 105–111 | MR | Zbl | MR | Zbl

[25] E. V. Ferapontov, M. V. Pavlov, J. Math. Phys., 44:3 (2003), 1150–1172 | DOI | MR | Zbl

[26] E. I. Ganzha, S. P. Tsarev, UMN, 51:5 (1996), 197–198 ; В. Е. Захаров, ТМФ, 128:1 (2001), 133–144 ; V. E. Zakharov, Duke Math. J., 94:1 (1998), 103–139 ; “Application of inverse scattering method to problem of differential geometry”, The legacy of the inverse scattering transform in applied mathematics, Proc. AMS-IMS-SIAM Join Summer Res. Conf. (South Hedley, MA, USA, 2001), Contemp. Math., 301, eds. J. Bona, R. Choudhury, D. Kaup, Amer. Math. Soc., Providence, RI, 2002, 15–34 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl