Additional constraints on quasi-exactly solvable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 237-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider constraints on two-dimensional quantum mechanical systems in domains with boundaries. The constraints result from the Hermiticity requirement for the corresponding Hamiltonians. We construct new two-dimensional families of formally exactly solvable systems. Taking the mentioned constraints into account, we show that the systems are in fact quasi-exactly solvable at best. Nevertheless, in the context of pseudo-Hermitian Hamiltonians, some of the constructed families are exactly solvable.
Keywords: quasi-exactly solvable system, pseudo-Hermitian Hamiltonian.
@article{TMF_2007_150_2_a4,
     author = {S. M. Klishevich},
     title = {Additional constraints on quasi-exactly solvable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {237--248},
     year = {2007},
     volume = {150},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a4/}
}
TY  - JOUR
AU  - S. M. Klishevich
TI  - Additional constraints on quasi-exactly solvable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 237
EP  - 248
VL  - 150
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a4/
LA  - ru
ID  - TMF_2007_150_2_a4
ER  - 
%0 Journal Article
%A S. M. Klishevich
%T Additional constraints on quasi-exactly solvable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 237-248
%V 150
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a4/
%G ru
%F TMF_2007_150_2_a4
S. M. Klishevich. Additional constraints on quasi-exactly solvable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 237-248. http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a4/

[1] A. Turbiner, Comm. Math. Phys., 118 (1988), 467 | DOI | MR | Zbl

[2] M. Shifman, Int. J. Mod. Phys. A, 4 (1989), 2897 | DOI | MR

[3] A. G. Ushveridze, EChAYa, 20 (1989), 1185 ; 23:1 (1993), 58 | MR | MR

[4] A. Ushveridze, Quasi-exactly solvable models in quantum mechanics, IOP Publ., Bristol, 1994 | MR | Zbl

[5] S. Klishevich, M. Plyushchay, Nucl. Phys. B, 616 (2001), 403 ; ; Nucl. Phys. B, 640 (2002), 481 ; hep-th/0105135hep-th/0202077 | DOI | MR | Zbl | MR | DOI | MR | Zbl | MR

[6] H. Aoyama, H. Kikuchi, I. Okouchi, M. Sato, S. Wada, Nucl. Phys. B, 553 (1999), 644 ; hep-th/9808034 | DOI | MR | Zbl

[7] S. Klishevich, M. Plyushchay, Nucl. Phys. B, 606 (2001), 583 ; ; 628, 2002 ; ; H. Aoyama, M. Sato, T. Tanaka, Nucl. Phys. B, 619 (2001), 105 ; ; H. Aoyama, N. Nakayama, M. Sato, T. Tanaka, Phys. Lett. B, 519 (2001), 260 ; hep-th/0012023hep-th/0112158quant-ph/0106037hep-th/0107048 | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[8] A. Andrianov, A. Sokolov, Nucl. Phys. B, 660 (2003), 25 ; ; A. Andrianov, F. Cannata, J. Phys. A, 37 (2004), 10297 ; hep-th/0301062hep-th/0407077 | DOI | MR | Zbl | DOI | MR | Zbl

[9] S. Klishevich, Quasi-exact solvability and intertwining relations, hep-th/0410064

[10] A. Andrianov, M. Ioffe, V. Spiridonov, Phys. Lett. A, 174 (1993), 273 ; hep-th/9303005 | DOI | MR

[11] A. González-López, N. Kamran, P. Olver, Comm. Math. Phys., 153 (1993), 117 | DOI | MR | Zbl

[12] G. Post, A. Turbiner, Russ. J. Math. Phys., 3 (1995), 113 ; funct-an/9307001 | MR | Zbl

[13] D. Gómez-Ullate, N. Kamran, R. Milson, J. Phys. A, 38 (2005), 2005 ; nlin.si/0401030 | DOI | MR | Zbl

[14] A. Minzoni, M. Rosenbaum, A. Turbiner, Mod. Phys. Lett. A, 11 (1996), 1977 ; ; X. Hou, M. A. Shifman, Int. J. Mod. Phys. A, 14 (1999), 2993 ; ; T. Tanaka, Ann. Phys., 309 (2004), 239 ; Erratum, 320 (2005), 257 ; ; K. G. Boreskov, J. C. López-Vieyra, A. V. Turbiner, Comm. Math. Phys., 260 (2005), 17 ; ; A. Turbiner, J. Nonlin. Math. Phys. Suppl., 12 (2005), 660 hep-th/9606092hep-th/9812157hep-th/0306174hep-th/0407204 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR

[15] A. González-López, N. Kamran, P. Olver, J. Phys. A, 24 (1991), 3995 | DOI | MR | Zbl

[16] M. A. Shifman, A. V. Turbiner, Comm. Math. Phys., 126 (1989), 347 | DOI | MR | Zbl

[17] M. Znojil, J. Phys. A, 34 (2001), 9585 ; math-ph/0102034 | DOI | MR | Zbl

[18] C. Bender, S. Boettcher, Phys. Rev. Lett., 80 (1998), 5243 ; C. Bender, S. Boettcher, P. Meisinger, J. Math. Phys., 40 (1999), 2201 ; ; A. Mostafazadeh, J. Math. Phys., 43 (2002), 205 ; ; M. Znojil, M. Tater, J. Phys. A, 34 (2001), 1793 ; ; Phys. Lett. A, 284 (2001), 225 ; ; C. Bender, D. Brody, H. Jones, Phys. Rev. Lett., 89 (2002), 270401 ; ; 92, 2004 quant-ph/9809072math-ph/0107001quant-ph/0010087nucl-th/0103015quant-ph/0208076 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI

[19] A. V. Turbiner, “Lie-algebras and linear operators with invariant subspaces”, Lie algebras, cohomology and new applications to quantum mechanics (Springfield, MO, 1992), Contemp. Math., 160, eds. N. Kamran, P. Olver, Amer. Math. Soc., Providence, RI, 1994, 263 ; funct-an/9301001 | DOI | MR | Zbl

[20] N. Kamran, R. Milson, P. Olver, Adv. Math., 156 (2000), 286 ; solv-int/9904014 | DOI | MR | Zbl

[21] A. Capella, A. Turbiner, M. Rosenbaum, Int. J. Mod. Phys. A, 13 (1998), 3885 ; solv-int/9707005 | DOI | MR | Zbl

[22] A. Turbiner, Lie algebraic approach to the theory of polynomial solutions. 1. Ordinary differential equations and finite difference equations in one variable, hep-th/9209079 | MR