Universal Maslov class of a Bohr–Sommerfeld Lagrangian embedding into
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 325-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that in the case of a Bohr–Sommerfeld Lagrangian embedding into a pseudo-Einstein symplectic manifold, a certain universal 1-cohomology class, analogous to the Maslov class, can be defined. In contrast to the Maslov index, the presented class is directly related to the minimality problem for Lagrangian submanifolds if the ambient pseudo-Einstein manifold admits a Kähler–Einstein metric. We interpret the presented class geometrically as a certain obstruction to the continuation of one-dimensional supercycles from the Lagrangian submanifold to the ambient symplectic manifold.
Keywords: pseudo-Einstein symplectic submanifold, compatible almost complex structure, anticanonical bundle, Bohr–Sommerfeld Lagrangian submanifold, Maslov index.
Mots-clés : prequantization connection
@article{TMF_2007_150_2_a10,
     author = {N. A. Tyurin},
     title = {Universal {Maslov} class of {a~Bohr{\textendash}Sommerfeld} {Lagrangian} embedding into},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {325--337},
     year = {2007},
     volume = {150},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a10/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Universal Maslov class of a Bohr–Sommerfeld Lagrangian embedding into
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 325
EP  - 337
VL  - 150
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a10/
LA  - ru
ID  - TMF_2007_150_2_a10
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Universal Maslov class of a Bohr–Sommerfeld Lagrangian embedding into
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 325-337
%V 150
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a10/
%G ru
%F TMF_2007_150_2_a10
N. A. Tyurin. Universal Maslov class of a Bohr–Sommerfeld Lagrangian embedding into. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 325-337. http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a10/

[1] V. I. Arnold, A. G. Givental, Simplekticheskaya geometriya, UdGU, Izhevsk, 2000 | MR

[2] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[3] K. Fukaya, Morse homotopy, $A^{\infty}$-category and Floer homologies, MSRI Preprint No 020-94, MSRI, Berkeley, 1994 ; “Morse homotopy, $A^{\infty}$-category and Floer homologies”, Proc. GARC Workshop on Geometry and Topology'93 (Seoul, Korea, 1993), Lecture Notes Ser. Seoul, 18, Seoul National Univ., Seoul, 1993, 1–102 | MR | Zbl

[4] N. A. Tyurin, Maslov class of lagrangian embedding to Kahler manifold, math.SG/0602330

[5] S. Donaldson, P. Kronheimer, The Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990 | MR | Zbl

[6] A. L. Gorodentsev, A. N. Tyurin, Izv. RAN. Ser. matem., 65:3 (2001), 15–50 | DOI | MR | Zbl

[7] N. A. Tyurin, Izv. RAN. Ser. matem., 66:3 (2002), 175–196 | DOI | MR

[8] Y.-G. Oh, Commun. Pure Appl. Math., 46 (1993), 949–993 | DOI | MR | Zbl

[9] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, N.Y., 1978 | MR | Zbl

[10] M. V. Karasev, Russ. J. Math. Phys., 3:3 (1995), 393–400 | MR | Zbl