Universal Maslov class of a~Bohr--Sommerfeld Lagrangian embedding into
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 325-337
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that in the case of a Bohr–Sommerfeld Lagrangian embedding into
a pseudo-Einstein symplectic manifold, a certain universal 1-cohomology class,
analogous to the Maslov class, can be defined. In contrast to the Maslov
index, the presented class is directly related to the minimality problem for
Lagrangian submanifolds if the ambient pseudo-Einstein manifold admits
a Kähler–Einstein metric. We interpret the presented class geometrically as
a certain obstruction to the continuation of one-dimensional supercycles from
the Lagrangian submanifold to the ambient symplectic manifold.
Keywords:
pseudo-Einstein symplectic submanifold, compatible almost complex structure, anticanonical bundle, Bohr–Sommerfeld Lagrangian submanifold, Maslov index.
Mots-clés : prequantization connection
Mots-clés : prequantization connection
@article{TMF_2007_150_2_a10,
author = {N. A. Tyurin},
title = {Universal {Maslov} class of {a~Bohr--Sommerfeld} {Lagrangian} embedding into},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {325--337},
publisher = {mathdoc},
volume = {150},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a10/}
}
N. A. Tyurin. Universal Maslov class of a~Bohr--Sommerfeld Lagrangian embedding into. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 325-337. http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a10/