$M$-Theory of Matrix Models
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 179-192

Voir la notice de l'article provenant de la source Math-Net.Ru

Small $M$-theories incorporate various models representing a unified family in the same way that the $M$-theory incorporates a variety of superstring models. We consider this idea applied to the family of eigenvalue matrix models: their $M$-theory unifies various branches of the Hermitian matrix model (including the Dijkgraaf–Vafa partition functions) with the Kontsevich $\tau$-function. Moreover, the corresponding duality relations are reminiscent of instanton and meron decompositions, familiar from the Yang–Mills theory.
Keywords: string theory, matrix model, duality.
@article{TMF_2007_150_2_a0,
     author = {A. S. Alexandrov and A. D. Mironov and A. Yu. Morozov},
     title = {$M${-Theory} of {Matrix} {Models}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--192},
     publisher = {mathdoc},
     volume = {150},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a0/}
}
TY  - JOUR
AU  - A. S. Alexandrov
AU  - A. D. Mironov
AU  - A. Yu. Morozov
TI  - $M$-Theory of Matrix Models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 179
EP  - 192
VL  - 150
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a0/
LA  - ru
ID  - TMF_2007_150_2_a0
ER  - 
%0 Journal Article
%A A. S. Alexandrov
%A A. D. Mironov
%A A. Yu. Morozov
%T $M$-Theory of Matrix Models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 179-192
%V 150
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a0/
%G ru
%F TMF_2007_150_2_a0
A. S. Alexandrov; A. D. Mironov; A. Yu. Morozov. $M$-Theory of Matrix Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 179-192. http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a0/