$M$-Theory of Matrix Models
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 179-192
Voir la notice de l'article provenant de la source Math-Net.Ru
Small $M$-theories incorporate various models representing a unified family
in the same way that the $M$-theory incorporates a variety of superstring
models. We consider this idea applied to the family of eigenvalue matrix
models: their $M$-theory unifies various branches of the Hermitian
matrix model (including the Dijkgraaf–Vafa partition functions) with
the Kontsevich $\tau$-function. Moreover, the corresponding duality relations
are reminiscent of instanton and meron decompositions, familiar from
the Yang–Mills theory.
Keywords:
string theory, matrix model, duality.
@article{TMF_2007_150_2_a0,
author = {A. S. Alexandrov and A. D. Mironov and A. Yu. Morozov},
title = {$M${-Theory} of {Matrix} {Models}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--192},
publisher = {mathdoc},
volume = {150},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a0/}
}
A. S. Alexandrov; A. D. Mironov; A. Yu. Morozov. $M$-Theory of Matrix Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 2, pp. 179-192. http://geodesic.mathdoc.fr/item/TMF_2007_150_2_a0/