Isomonodromic deformations and “antiquantization" for the simplest ordinary differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 143-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider three different models of linear differential equations and their isomonodromic deformations. We show that each of the models has its own specificity, although all of them lead to the same final result. It turns out that isomonodromic deformations are closely related to the Hamiltonian structure of both classical mechanics and quantum mechanics.
Mots-clés : isomonodromic deformations, antiquantization
Keywords: accessory parameter, inessential singularity.
@article{TMF_2007_150_1_a7,
     author = {S. Yu. Slavyanov and F. R. Vukailovich},
     title = {Isomonodromic deformations and {\textquotedblleft}antiquantization" for the~simplest ordinary differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {143--151},
     year = {2007},
     volume = {150},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a7/}
}
TY  - JOUR
AU  - S. Yu. Slavyanov
AU  - F. R. Vukailovich
TI  - Isomonodromic deformations and “antiquantization" for the simplest ordinary differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 143
EP  - 151
VL  - 150
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a7/
LA  - ru
ID  - TMF_2007_150_1_a7
ER  - 
%0 Journal Article
%A S. Yu. Slavyanov
%A F. R. Vukailovich
%T Isomonodromic deformations and “antiquantization" for the simplest ordinary differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 143-151
%V 150
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a7/
%G ru
%F TMF_2007_150_1_a7
S. Yu. Slavyanov; F. R. Vukailovich. Isomonodromic deformations and “antiquantization" for the simplest ordinary differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 143-151. http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a7/

[1] S. Yu. Slavyanov, J. Phys. A, 29 (1996), 7329 | DOI | MR | Zbl

[2] S. Yu. Slavyanov, TMF, 123 (2000), 395 ; S. Yu. Slavyanov, Oper. Theory Adv. Appl., 132 (2002), 395 | DOI | MR | Zbl | MR | Zbl

[3] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: Edinaya teoriya, osnovannaya na osobennostyakh, Nevskii dialekt, S.-Pb., 2002 | MR | Zbl

[4] M. V. Babich, Uravneniya Shlezingera i uravneniya Garne–Penleve 6, geometriya perekhoda, Preprint POMI, 06-06, 2006 ; http://www.pdmi.ras.ru/preprint/2006/06-06.html | MR

[5] A. Ya. Kazakov, TMF, 116:3 (1998), 323 | DOI | MR | Zbl

[6] R. Fuchs, Math. Ann., 63 (1907), 301 | DOI | MR | Zbl

[7] D. P. Novikov, TMF, 146:3 (2006), 355 | DOI | MR | Zbl