Isomonodromic deformations and “antiquantization" for the simplest ordinary differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 143-151
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider three different models of linear differential equations and their isomonodromic deformations. We show that each of the models has its own specificity, although all of them lead to the same final result. It turns out that isomonodromic deformations are closely related to the Hamiltonian structure of both classical mechanics and quantum mechanics.
Mots-clés :
isomonodromic deformations, antiquantization
Keywords: accessory parameter, inessential singularity.
Keywords: accessory parameter, inessential singularity.
@article{TMF_2007_150_1_a7,
author = {S. Yu. Slavyanov and F. R. Vukailovich},
title = {Isomonodromic deformations and {\textquotedblleft}antiquantization" for the~simplest ordinary differential equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {143--151},
year = {2007},
volume = {150},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a7/}
}
TY - JOUR AU - S. Yu. Slavyanov AU - F. R. Vukailovich TI - Isomonodromic deformations and “antiquantization" for the simplest ordinary differential equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2007 SP - 143 EP - 151 VL - 150 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a7/ LA - ru ID - TMF_2007_150_1_a7 ER -
%0 Journal Article %A S. Yu. Slavyanov %A F. R. Vukailovich %T Isomonodromic deformations and “antiquantization" for the simplest ordinary differential equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2007 %P 143-151 %V 150 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a7/ %G ru %F TMF_2007_150_1_a7
S. Yu. Slavyanov; F. R. Vukailovich. Isomonodromic deformations and “antiquantization" for the simplest ordinary differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 143-151. http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a7/
[1] S. Yu. Slavyanov, J. Phys. A, 29 (1996), 7329 | DOI | MR | Zbl
[2] S. Yu. Slavyanov, TMF, 123 (2000), 395 ; S. Yu. Slavyanov, Oper. Theory Adv. Appl., 132 (2002), 395 | DOI | MR | Zbl | MR | Zbl
[3] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: Edinaya teoriya, osnovannaya na osobennostyakh, Nevskii dialekt, S.-Pb., 2002 | MR | Zbl
[4] M. V. Babich, Uravneniya Shlezingera i uravneniya Garne–Penleve 6, geometriya perekhoda, Preprint POMI, 06-06, 2006 ; http://www.pdmi.ras.ru/preprint/2006/06-06.html | MR
[5] A. Ya. Kazakov, TMF, 116:3 (1998), 323 | DOI | MR | Zbl