Zeroth-order phase transitions and Zipf law quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 118-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

From the standpoint of thermodynamic averaging of fission microprocesses, we investigate the origin of radioactive release in an NPP after an accident or after resource depletion. The genesis of the NPP release is interpreted as a new thermodynamic phenomenon, a zeroth-order phase transition. This problem setting results in a problem in probabilistic number theory. We prove the corresponding theorem leading to quantization of the Zipf law for the frequency of a zeroth-order phase transition with different values of the jump of the Gibbs thermodynamic potential. We introduce the notion of hole dimension.
Mots-clés : Chernobyl NPP, quantization
Keywords: probabilistic number theory, Bose–Einstein distribution, Zipf law, thermodynamics, negative dimension.
@article{TMF_2007_150_1_a6,
     author = {V. P. Maslov},
     title = {Zeroth-order phase transitions and {Zipf} law quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {118--142},
     year = {2007},
     volume = {150},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a6/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Zeroth-order phase transitions and Zipf law quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 118
EP  - 142
VL  - 150
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a6/
LA  - ru
ID  - TMF_2007_150_1_a6
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Zeroth-order phase transitions and Zipf law quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 118-142
%V 150
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a6/
%G ru
%F TMF_2007_150_1_a6
V. P. Maslov. Zeroth-order phase transitions and Zipf law quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 118-142. http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a6/

[1] A. N. Kolmogorov, PPI, 5:3 (1969), 3–7 | MR | Zbl

[2] V. V. Vyugin, V. P. Maslov, PPI, 39:4 (2003), 71–87 | MR | Zbl

[3] G. Shafer, V. Vovk, Probability and Finance. It's Only a Game!, Wiley, Chichester, 2001 | MR | Zbl

[4] D. A. Molodtsov, Teoriya myagkikh mnozhestv, URRS, M., 2004

[5] B. de Finetti, Theory of Probability, Wiley, N.Y., 1990 | MR | Zbl

[6] V. P. Maslov, V. P. Myasnikov, V. G. Danilov, Matematicheskoe modelirovanie avariinogo bloka Chernobylskoi AES, Nauka, M., 1987 | MR | Zbl

[7] A. N. Kolmogorov, Yubileinoe izdanie k 100-letiyu A. N. Kolmogorova. V trekh knigakh. Kniga vtoraya, Fizmatlit, M., 2003 | MR | Zbl

[8] R. E. Paierls, Zakony prirody, Fizmatgiz, M., 1962

[9] R. Kubo, Termodinamika, Mir, M., 1970

[10] L. L. Landau, E. M. Lifshits, Kvantovaya mekhanika, Gostekhizdat, M., 1948 | MR | Zbl

[11] N. N. Bogolyubov, Izv. AN SSSR. Ser. fiz., 11:1 (1947), 77–90 | MR

[12] N. N. Bogolyubov, Izbrannye trudy. V trekh tomakh, t. 1, 2, Naukova dumka, Kiev, 1970 | MR

[13] V. M. Long, Maslov-type index, degenerate critical points, and asymptotically linear hamiltonian systems, Science Press, Beijing, 1990 | MR | Zbl

[14] K. Hongo, Yu. Ji, Radio Science, 22 (1987), 357–366 | DOI

[15] V. P. Maslov, Matem. zametki, 80:6 (2006), 856–863 | DOI | MR | Zbl

[16] V. P. Maslov, Matem. zametki, 78:6 (2005), 870–877 | DOI | MR | Zbl

[17] V. P. Maslov, Matem. zametki, 78:3 (2005), 377–395 | DOI | MR | Zbl

[18] V. P. Maslov, Matem. zametki, 80:2 (2006), 220–230 | DOI | MR | Zbl

[19] \Hrefs M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[20] G. V. Koval, Chastnoe soobschenie, 2006

[21] M. Gromov, Asymptotic invariants of infinite groups. Geometric Group Theory, vol. 2, Cambridge University Press, 1993 | MR | Zbl

[22] L. D. Landau, E. M. Livshits, Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl

[23] V. P. Maslov, T. V. Maslova, Matem. zametki, 80:5 (2006), 718–732 | DOI | MR | Zbl

[24] R. V. Goldshtein, A. B. Mosolov, PMM, 56:4 (1992), 663–671 ; Докл. РАН, 329:4 (1993), 429–431 | MR | Zbl

[25] B. Mandelbrot, Fraktalnaya geometriya prirody, Institut kompyuternykh issledovanii, M., 2002 | MR | Zbl

[26] V. P. Maslov, P. P. Mosolov, Izv. AN SSSR. Ser. matem., 42:5 (1978), 1063–1100 ; В. П. Маслов, Квантование термодинамики и ультравторичное квантование, Институт компьютерных исследований, М., 2001 | MR | Zbl

[27] R. H. Dauskardt, F. Haubensak, R. O. Ritchie, Acta Metallurgica et Materialia, 38 (1990), 143–159 | DOI

[28] V. P. Maslov, P. P. Mosolov, Nonlinear wave equations perturbed by viscous terms, Walter de Gruyter, Berlin, N. Y., 2000 | MR | Zbl