Developing the~eikonal method in nonlinear electrodynamics based on the~geometrization principle
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 112-117

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive the eikonal equation for an electromagnetic wave propagating in an external electromagnetic field according to the laws of nonlinear electrodynamics. Based on Logunov's geometrization principle, we determine the metric tensors of the effective Riemannian spaces for the Born–Infeld electrodynamics, nonlinear Heisenberg–Euler electrodynamics, and a parameterized post-Maxwellian electrodynamics. We analyze the main properties of these nonlinear electrodynamics.
Keywords: geometrization principle, nonlinear electrodynamics
Mots-clés : eikonal equation.
@article{TMF_2007_150_1_a5,
     author = {I. V. Krivchenkov},
     title = {Developing the~eikonal method in nonlinear electrodynamics based on the~geometrization principle},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--117},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a5/}
}
TY  - JOUR
AU  - I. V. Krivchenkov
TI  - Developing the~eikonal method in nonlinear electrodynamics based on the~geometrization principle
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 112
EP  - 117
VL  - 150
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a5/
LA  - ru
ID  - TMF_2007_150_1_a5
ER  - 
%0 Journal Article
%A I. V. Krivchenkov
%T Developing the~eikonal method in nonlinear electrodynamics based on the~geometrization principle
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 112-117
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a5/
%G ru
%F TMF_2007_150_1_a5
I. V. Krivchenkov. Developing the~eikonal method in nonlinear electrodynamics based on the~geometrization principle. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 112-117. http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a5/