The Dirac Hamiltonian with a superstrong Coulomb field
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 41-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the quantum mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. It is often declared in the literature that a quantum mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with $Z=\alpha^{-1}=137$ because the standard expression for the lower bound-state energy yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any charge value. Furthermore, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is a nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than critical $($and larger than the subcritical charge with $Z=(\sqrt{3}/2)\alpha^{-1}=118)$. We present the spectra and $($generalized$)$ eigenfunctions for all self-adjoint Hamiltonians. We use the methods of the theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals. The relation of the constructed one-particle quantum mechanics to the real physics of electrons in superstrong Coulomb fields where multiparticle effects may be crucially important is an open question.
Keywords: Dirac Hamiltonian, Coulomb field, self-adjoint extensions, spectral analysis.
@article{TMF_2007_150_1_a2,
     author = {B. L. Voronov and D. M. Gitman and I. V. Tyutin},
     title = {The~Dirac {Hamiltonian} with a~superstrong {Coulomb} field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--84},
     year = {2007},
     volume = {150},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a2/}
}
TY  - JOUR
AU  - B. L. Voronov
AU  - D. M. Gitman
AU  - I. V. Tyutin
TI  - The Dirac Hamiltonian with a superstrong Coulomb field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 41
EP  - 84
VL  - 150
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a2/
LA  - ru
ID  - TMF_2007_150_1_a2
ER  - 
%0 Journal Article
%A B. L. Voronov
%A D. M. Gitman
%A I. V. Tyutin
%T The Dirac Hamiltonian with a superstrong Coulomb field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 41-84
%V 150
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a2/
%G ru
%F TMF_2007_150_1_a2
B. L. Voronov; D. M. Gitman; I. V. Tyutin. The Dirac Hamiltonian with a superstrong Coulomb field. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 41-84. http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a2/

[1] S. Shveber, Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, M., 1963 | MR | Zbl

[2] V. G. Bagrov, D. M. Gitman, Exact solutions of relativistic wave equations, Kluwer, Dordrecht, 1990 | MR | Zbl

[3] W. H. Furry, Phys. Rev., 81 (1951), 115–124 | DOI | MR | Zbl

[4] S. P. Gavrilov, D. M. Gitman, Int. J. Modern Phys. A, 15 (2000), 4499–4538 | MR | Zbl

[5] Sinkhrotronnoe izluchenie, Sb. statei, eds. A. A. Sokolov, I. M. Ternov, Nauka, M., 1966; А. А. Соколов, И. М. Тернов, Релятивистский электрон, Наука, М., 1983; И. М. Тернов, В. В. Михайлин, Синхротронное излучение. Теория и эксперимент, Энергоатомиздат, М., 1986

[6] V. I. Ritus, Kvantovaya elektrodinamika yavlenii v intensivnom pole, Tr. FIAN SSSR, 111, 1979, 5–151 | MR

[7] A. I. Nikishov, “Rol svyazi spina i statistiki v kvantovoi elektrodinamike s vneshnim polem, porozhdayuschim pary”, Problemy teoreticheskoi fiziki, Nauka, M., 1972, 299–305; Квантовая электродинамика явлений в интенсивном поле, Тр. ФИАН СССР, 111, 1979, 153–271; В. Г. Багров, Д. М. Гитман, Ш. М. Шварцман, ЖЭТФ, 68 (1975), 395–399

[8] D. M. Gitman, J. Phys. A, 10 (1977), 2007–2020 ; Д. М. Гитман, Е. С. Фрадкин, Ш. М. Шварцман, Квантовая электродинамика с нестабильным вакуумом, Наука, М., 1991 | DOI | MR

[9] S. P. Gavrilov, D. M. Gitman, A. A. Smirnov, B. L. Voronov, “Dirac fermions in a magnetic-solenoid field”, Focus on Mathematical Physics Research, ed. C. V. Benton, Nova Science Publishers, N. Y., 2004, 131–168 | MR

[10] J. von Neumann, Mat. Ann., 102 (1929), 49–131 ; M. H. Stone, “Linear Transformations in Hilbert Space and their Applications to Analysis”, Am. Math. Soc., Colloq. Publ., 15, AMS, N. Y., 1932 | MR | Zbl | MR | Zbl

[11] G. Bete, E. Solpiter, Kvantovaya mekhanika atomov s odnim i dvumya elektronami, Fizmatgiz, M., 1960 | MR | Zbl

[12] P. A. M. Dirac, Proc. Roy. Soc. London A, 117 (1928), 610–624 ; 118 (1928), 351–361 ; C. G. Darwin, Proc. Roy. Soc. London A, 118 (1928), 654–680 ; W. Gordon, Zs. Phys., 48 (1928), 11–14 ; E. U. Gordon, G. H. Shortley, The Theory of Atomic Spectra, Cambridge Univ. Press, Cambridge, 1935 | DOI | Zbl | DOI | Zbl | DOI | MR | Zbl | DOI | Zbl

[13] M. E. Rose, Relativistic Electron Theory, Wiley, N. Y., 1961 | Zbl

[14] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, Nauka, M., 1969 | MR | Zbl

[15] W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin, 1985

[16] Ya. B. Zeldovich, V. S. Popov, UFN, 105 (1971), 403 | DOI | MR

[17] I. Pomeranchuk, Ya. Smorodinsky, J. Phys. USSR, 9 (1945), 97; С. С. Герштейн, Я. Б. Зельдович, ЖЭТФ, 57 (1969), 654; Nuovo Cimento Lett., 1 (1969), 835 | DOI

[18] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 ; М. А. Наймарк, Линейные дифференциальные операторы, Наука, М., 1969 | MR | Zbl | MR | Zbl

[19] A. I. Plesner, Spektralnaya teoriya lineinykh operatorov, Nauka, M., 1965 | MR | Zbl

[20] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR | Zbl

[21] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits i I. Stigan, Nauka, M., 1979 | MR | Zbl

[22] B. L. Voronov, D. M. Gitman, I. V. Tyutin, Self-adjoint differential operators associated with self-adjoint differential expressions, quant-ph/0603187 | MR