Semiclassical spectral series of a Hartree-type operator corresponding
Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 26-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the classical equations of motion in quantum means, i.e., the Hamilton–Ehrenfest system. In the semiclassical approximation in the framework of the covariant approach based on these equations, we construct the spectral series of a nonlinear Hartree-type operator corresponding to a rest point.
Keywords: complex germ method, spectral series, Hartree equation.
@article{TMF_2007_150_1_a1,
     author = {V. V. Belov and F. N. Litvinets and A. Yu. Trifonov},
     title = {Semiclassical spectral series of {a~Hartree-type} operator corresponding},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {26--40},
     year = {2007},
     volume = {150},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a1/}
}
TY  - JOUR
AU  - V. V. Belov
AU  - F. N. Litvinets
AU  - A. Yu. Trifonov
TI  - Semiclassical spectral series of a Hartree-type operator corresponding
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2007
SP  - 26
EP  - 40
VL  - 150
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a1/
LA  - ru
ID  - TMF_2007_150_1_a1
ER  - 
%0 Journal Article
%A V. V. Belov
%A F. N. Litvinets
%A A. Yu. Trifonov
%T Semiclassical spectral series of a Hartree-type operator corresponding
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2007
%P 26-40
%V 150
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a1/
%G ru
%F TMF_2007_150_1_a1
V. V. Belov; F. N. Litvinets; A. Yu. Trifonov. Semiclassical spectral series of a Hartree-type operator corresponding. Teoretičeskaâ i matematičeskaâ fizika, Tome 150 (2007) no. 1, pp. 26-40. http://geodesic.mathdoc.fr/item/TMF_2007_150_1_a1/

[1] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[2] S. R. de Groot, L. G. Sattorp, Elektrodinamika, Mir, M., 1982

[3] Y. Lai, H. A. Haus, Phys. Rev. A, 40 (1989), 844–853 ; 854–866 | DOI | MR

[4] L. P. Pitaevskii, UFN, 168 (1998), 641–653 | DOI

[5] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1984 | MR

[6] M. Born, Z. Phys., 38 (1926), 803–827 ; П. Эренфест, “Замечание о приближенной справедливости классической механики в рамках квантовой механики”, Относительность. Кванты. Статистика, Наука, М., 1972, 82–84 | DOI | MR

[7] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 ; В. П. Маслов, М. В. Федорюк, Квазиклассическое приближение для уравнений квантовой механики, Наука, М., 1976 | MR | MR | Zbl

[8] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR | Zbl

[9] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[10] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 ; В. В. Белов, С. Ю. Доброхотов, ТМФ, 92:2 (1992), 215–254 | MR | Zbl | DOI | MR

[11] M. V. Karasev, A. V. Pereskokov, TMF, 79:2 (1989), 198–208 ; 97:1 (1993), 78 ; Изв. РАН. Сер. Матем., 65:3 (2001), 33–72 ; 65:6 (2001), 57–98 ; М. В. Карасев, В. П. Маслов, “Алгебры с общими перестановочными соотношениями и их приложения. II. Операторные унитарно-нелинейные уравнения”, Итоги науки и техники. Сер. современные проблемы математики, 13, ВИНИТИ, М., 1979, 145–267 ; M. V. Karasev, V. P. Maslov, J. Soviet Math., 15 (1981), 273–368 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR | DOI

[12] V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, Int. J. Math. Math. Sci., 32:6 (2002), 325–370 | DOI | MR | Zbl

[13] V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, TMF, 130:3 (2002), 460–492 | DOI | MR | Zbl

[14] A. L. Lisok, A. Yu. Trifonov, A. V. Shapovalov, J. Phys. A, 37 (2004), 4535–4556 | DOI | MR | Zbl

[15] A. L. Lisok, A. Yu. Trifonov, A. V. Shapovalov, Proc. Inst. Math. NAS Ukr., 50:3 (2004), 1454–1465 ; Symm., Integr. Geom.: Methods and Appl. (SIGMA), 1 (2005), Paper 007, 14 pp. ; F. N. Litvinets, A. V. Shapovalov, A. Yu. Trifonov, J. Phys. A, 39 (2006), 1191–1206 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[16] V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, Ann. Phys. (NY), 246:2 (1996), 231–280 | DOI | MR

[17] V. V. Belov, M. F. Kondrateva, Matem. zametki, 56:6 (1994), 27–39 ; 58:6 (1995), 803–817 | MR | Zbl | DOI | MR | Zbl

[18] V. G. Bagrov, V. V. Belov, M. F. Kodrateva, TMF, 98:1 (1994), 48–55 ; V. G. Bagrov, V. V. Belov, M. F. Kondratyeva, et al., J. Moscow Phys. Soc., 3 (1993), 309–320 ; “The quasiclassical localization of the states and a new approach of quasi-classical approximation in quantum mechanics”, Particle Physics, Gauge Fields and Astrophysics, Accademia Nazilonale dei Lincei, Rome, 1994, 132–142; V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, “New methods for semiclassical approximation in quantum mechanics”, Proc. Int. Workshop Quantum Systems: New Trends and Methods (Minsk, May 23–29, 1994), eds. A. O. Barut, I. D. Feranchuk, Ya. M. Shnir, L. M. Tomil'chik, World Scientific, Singapore, 1995, 533–543 | DOI | MR | Zbl | MR

[19] M. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 ; А. М. Переломов, Обобщенные когерентные состояния и их применение, Наука, М., 1987 | MR | MR | Zbl

[20] V. G. Bagrov, V. V. Belov, I. M. Ternov, TMF, 50:3 (1982), 390–396 ; V. G. Bagrov, V. V. Belov, I. M. Ternov, J. Math. Phys., 24:12 (1983), 2855–2859 ; В. В. Белов, В. П. Маслов, ДАН СССР, 305:3 (1989), 574–580 ; 311:4 (1990), 849–854 ; V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, Semiclassical trajectory-coherent approximation in quantum mechanics: II. High order corrections to the Dirac operators in external electromagnetic field, ; В. В. Белов, М. Ф. Кондратьева, ТМФ, 92:1 (1992), 41–60 ; V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, A. A. Yevseyevich, Class. Quant. Grav., 8 (1991), 515–527 ; 1349–1359 ; 1833–1846 ; V. G. Bagrov, A. Yu. Trifonov, A. A. Yevseyevich, Class. Quant. Grav., 9 (1992), 533–543 quant-ph/9806017 | DOI | MR | DOI | MR | MR | MR | MR | DOI | MR | DOI | MR | MR | MR | DOI | MR

[21] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya. Funktsii parabolicheskogo tsilindra. Ortogonalnye mnogochleny, Nauka, M., 1966 | MR | Zbl

[22] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 ; М. Абловиц, Х. Сегур, Солитоны и метод обратной задачи, Мир, М., 1983 | MR | Zbl | MR | Zbl

[23] I. V. Simenog, TMF, 30:3 (1977), 408–414 | DOI | MR