The possibility of reconciling quantum mechanics with classical probability theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 457-472
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a scheme for constructing quantum mechanics in which a quantum system is considered as a collection of open classical subsystems. This allows using the formal classical logic and classical probability theory in quantum mechanics. Our approach nevertheless allows completely reproducing the standard mathematical formalism of quantum mechanics and identifying its applicability limits. We especially attend to the quantum state reduction problem.
Keywords: quantum measurement, probability theory, quantum state reduction.
Mots-clés : algebra of observables
@article{TMF_2006_149_3_a9,
     author = {D. A. Slavnov},
     title = {The~possibility of reconciling quantum mechanics with classical probability theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {457--472},
     year = {2006},
     volume = {149},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a9/}
}
TY  - JOUR
AU  - D. A. Slavnov
TI  - The possibility of reconciling quantum mechanics with classical probability theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2006
SP  - 457
EP  - 472
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a9/
LA  - ru
ID  - TMF_2006_149_3_a9
ER  - 
%0 Journal Article
%A D. A. Slavnov
%T The possibility of reconciling quantum mechanics with classical probability theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2006
%P 457-472
%V 149
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a9/
%G ru
%F TMF_2006_149_3_a9
D. A. Slavnov. The possibility of reconciling quantum mechanics with classical probability theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 149 (2006) no. 3, pp. 457-472. http://geodesic.mathdoc.fr/item/TMF_2006_149_3_a9/

[1] I. Fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[2] D. A. Slavnov, TMF, 142 (2005), 510 | DOI | MR | Zbl

[3] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[4] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[5] S. Kochen, E. P. Specker, J. Math. Mech., 17 (1967), 59 ; D. M. Greenberg, M. A. Horne, A. Shimony, A. Zeilinberg, Amer. J. Phys., 58 (1990), 1131 | MR | Zbl | DOI | MR | Zbl

[6] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974 | MR | Zbl

[7] D. A. Slavnov, TMF, 136 (2003), 436 | DOI | MR | Zbl

[8] Zh. Neve, Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR | Zbl

[9] J. F. Clauser, M. A. Horn, A. Shimony, R. A. Holt, Phys. Rev. Lett., 23 (1969), 880 | DOI

[10] J. S. Bell, Physics, 1 (1965), 195

[11] P. Jordan, Z. Phys., 80 (1933), 285 | DOI | Zbl

[12] Zh. Emkh, Algebraicheskii podkhod v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976

[13] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[14] M. Born, Z. Phys., 37 (1926), 863 ; 38, 803 ; 40 (1927), 167 | DOI | Zbl | DOI | DOI